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Abstract Digital try-on system, as a promising utility
for E-Commerce, has the potential to become one of
the revolutionary technologies that change people’s lives.
However, its development is limited by some practical
constraints, such as accurate sizing of the body and vivid
try-on demonstrations. With recent advances in machine
learning, these challenging problems become increasingly
more tractable. We enumerate a set of three open challenges
towards a complete and easy-to-use try-on system that can
be enabled by recent advances in machine learning. For each
of them, we define the problem, introduce state-of-the-art
approaches, and provide future directions. A digital try-on
system enabled by machine learning techniques can further
enhance the consumer’s E-shopping experience and provide
notable economic benefits to the society.

Keywords Machine-Learning, Digital Try-On, Garment
Modeling, Human Body Estimation, Material
Estimation.

1 Introduction

E-Commerce has been growing at a rapid pace in recent
years. Consumers today are more likely to shop online than
visiting retail stores. It is much more complicated, however,
when it comes to buying clothes. People need to know
how a garment fits on them, how it looks, and how it feels.
Digital try-on systems can potentially satisfy these needs,
providing direct visual impression, and possibly customized
cloth sizing as well. Therefore, it has drawn much attention
as one attractive alternative to improve the user experience
and popularize online fashion shopping.

However, the technology is still far from being practical
and easy-to-use to replace physical try-on. Currently,
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most of the try-on systems are either image-editing, copy-
pasting, or only showing template demonstrations, while
the ultimate goal is a fast and realistic try-on system
adaptive to any customers’ body. There is still a substantial
technological gap in modeling and demonstrating garment
fitting in the digital vs. the real worlds, including fast
and realistic demonstration, accurate modeling of human
body and garments, faithful estimation of garment materials,
and lossless transformation of garments between virtual and
physical worlds.

In this paper, we present some open research issues that
contribute to this technological gap, including:

1. Accurate estimation of human shapes and sizes through
consumer devices;

2. Faithful recovery of garment materials via (online)
images;

3. Ease of design and manipulation on sewing patterns
and garment pieces by end-users.

Although traditional methods have made important
progresses on these under-constrained problems, learning-
based approaches have shown tremendous potential in
making notable impact. Compared to traditional methods,
machine-learning algorithms are usually a lot faster since
the training and the optimization are done offline. They
are also good at generalization to unseen images without
the need of tedious data pre-processing. While extensive
study is made on 2D image learning, machine-learning on
3D human body and shapes with high variations is still far
from being mature, which is the reason why the open issues
described above still remain illusive.

For each problem listed above, we motivate its
importance, provide a problem definition, and present state-
of-the-art approaches with potential improvements. We
believe that the solutions to these challenging problems will
lead to significant advances in digital try-on, as well as other
areas of E-commerce.
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2 Open Problems

In this section we first introduce the three major
challenges that limit digital try-on technology from being
widely adopted and accepted by shoppers. There are
several reasons why they still prefer physical try-on. First,
consumers are unsure if what they buy online will fit their
bodies well. Although there exist general sizing systems
for individuals, its lack of consistency and standardization
across different brands and garment materials can often
make it difficult to sizing the clothes, especially for those
with non-standard body shapes and proportion. Accurate
estimation of human body shapes is the key to make digital
try-on work. Second, the fabric material is usually one of
the key considerations when shopping for clothes. Different
fabric materials affect how the garments look and fit on a
body, how consumers would wear it, and whether or not
they would buy it. However, the correspondences between
the actual material and its digital representation are not well
understood. It is also challenging to acquire full fabric
material and digital cloning from the real-world examples.

Visual effects from the customers’ view is as critical
as other factors. There are two approaches to display
garments: 2D image-based and 3D mesh with (photo-
realistic) rendering. They have different advantages and
drawbacks, but both need a large garment database for
support. While creating a 3D garment takes considerable
efforts, 2D images often suffer from the lack of variation
and are much more difficult to make customized changes.
In either case, the try-on system would need a user-
friendly design and manipulation backend to suffice the
needs. Last, but not least, a fast and vivid animation of
the garments in motion along with the body movement will
greatly improve the user experience. Although it is not
so critical as other factors, it would effectively reduce the
perceptual gap between the real world and the digital one for
online shopping. Previous work has proposed using cloud
computing to improve the animation speed, but there is still
a notable technology gap towards high-quality, interactive
3D animation of clothes.

3 Human Shape Estimation

As mentioned above, accurate human shape estimation is
key to enabling digital try-on. Human body reconstruction,
consisting of pose and shape estimation, has been widely
studied in a variety of areas, including digital surveillance,
computer animation, special effects, and virtual/augmented
environments. Yet, it remains a challenging and popular
topic of interest. While direct 3D body scanning can provide
excellent and sufficiently accurate results, its adoption is
somewhat limited by the required specialized hardware.

As input, RGB images are widely available and can be
easily captured using commodity mobile devices for digital
try-on. Although purely image-based try-on methods are
proposed [29], learning-based 3D body estimations are more
widely applicable in that the 3D body is articulated and can
be re-posed and re-targeted.

We define the human-body reconstruction problem
informally as, given one or a set of RGB images, estimate
the human body geometry and sizes, and output (preferably)
a 3D humanoid mesh. Traditional algorithms often
formulate it as an optimization problem, and compute
the silhouette difference as its major part of the target
function [7]. Therefore, these methods either require the
human to wear tight clothes, or alternatively relax the target
function to be unilateral on uncovered body parts [3] or to
point correspondences [13]. The use of machine learning
methods in this problem was game-changing. First, it
moved the algorithm from online to offline, significantly
reduced the inquiry latency. Second, by using a parametric
human model [17], one can easily construct a regression
network for the parameters while the losses needed can
also be inferred from them. While early works propose
network models for only 2D/3D body skeletons [4, 18, 24],
more recent works introduce techniques to regress the entire
human body – either using a parametric human model [2,
11] or voxel-based representation [20, 22, 28]. Given the
fact that the annotations in most real-world datasets contain
only joint positions, the learning process has been refined in
various ways [1, 12, 21, 25]. The current state of the art is
the recent work by [15]1 that emphasizes on shape learning,
while many other works often focus on body-joint losses,
but neglect the effect of body shapes.

The key contribution of [15] is a multi-view multi-stage
framework to address the ambiguity issue caused by camera
projection (Fig. 1). Their model is iteratively run for several
stages of error correction. Within each stage, the multi-view
image input is passed on one at a time. At each step, the
shared-parameter prediction block computes the correction
based on the image feature and the input guesses. The
camera and the human body parameters are estimated at the
same time, projecting the predicted 3D joints back to 2D for
loss computation. The estimated pose and shape parameters
are shared among all views, while each view maintains its
camera calibration and the global rotation. Their proposed
framework uses a recurrent structure, making it a universal
model applicable to the input of any number of views. At
the same time, it couples the shareable information across
different views so that the human body pose and shape can
be optimized using image features from all views. Different

1Their data and code is available at: https://gamma.umd.edu/
researchdirections/virtualtryon/humanmultiview
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Fig. 1 The network structure from [15]. By using an iterative value correction structure, the visual information from different views is effectively integrated together
to jointly provide a unified human shape.

(a) The input image. (b) Recovered Body [15].

Fig. 2 Prediction results of the state of the art [15]. The model can capture the
shape of the human body by learning from synthetic data. The recovered legs
and chest are close to the person in the image.

from static multi-view CNNs which have to fix the number
of inputs, they make use of the RNN-like structure in a
cyclic form to accept any number of views, and avoid
the gradient vanishing by predicting the corrective values
instead of the updated parameters at each regression block.

Experiments have shown that this trained model can
provide equally good pose estimation as the state of the
art using single-view images, while providing considerable
improvement on pose estimation using multi-view inputs
and a better shape estimation across all datasets. One
example is demonstrated in Fig. 2. Moreover, a physically-
based synthetic data generation pipeline is introduced to
enrich the training data, which is very helpful for shape
estimation and regularization of end effectors that traditional
datasets do not capture. While synthetic data improves the
diversity of human bodies with ground-truth parameters, a
larger garment dataset and a more convenient registration
process are needed to minimize the performance gap
between real-world images and synthetic data. In addition,

other variables such as hair, skin color, and 3D backgrounds
are subtle elements that can influence the perceived realism
of the synthetic data at the higher expense of a more
complex data generation pipeline. With the recent progress
in image style transfer using GAN, a promising direction is
to transfer the synthetic result to more realistic images to
further improve the learning result.

4 Garment Material Cloning

Garment material plays an important role in digital try-on
systems. Physical recreation of the fabric not only gives a
compelling visual simulacrum of the cloth, but also affects
how the garment feels and fits on the body. However,
modeling material is a challenging task: the visual effect
and physical interaction of the garment is determined not
only by the type of materials it is made of, but also the way
of sewing and yarning. Due to this factor, researchers often
focus on the physical properties it behaves, rather than the
underlying semantic primitives.

Following such assumption, we model the garment
material cloning problem as below. Given a sufficient
amount of data, model its physical behaviors and compute
the corresponding properties, such that the same or similar
visual effect can be reproduced on computers. It has two
implication: first we need to define a physical model of the
material, next we estimate the parameters in the model.

There are many works to model clothes, including spring-
mass systems and finite elements. Finite elements method
is the most popular model since it can produce realistic
results. While one can use isotropic properties such as
Yang’s Modulus and Poisson Ratio, anisotropic model is the
better choice since it can support different behaviors caused
by yarning.
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4.1 Learning-Based Estimation

While traditional optimization methods [27] often take
a long time to compute the material parameters, machine-
learning methods can do predictions in real-time by a
simple feed-forward operation, which is more feasible
in applications that need fast feedback, such as garment
prototyping. The state-of-the-art model from Yang et
al. [26]2 used CNN combined with LSTM to recover the
material parameters from videos.

Fig. 3 The network model from [26]. The cloth material is estimated by learning
motion patterns of image features given by CNN.

Fig. 4 Learned CNN conv5-layer activation visualization from [26].
Experiments show that the trained model is able to capture moving parts of the
cloth even in an unseen video.

To constrain both the input and solution space, they
choose one of the materials as the basis and the material
sub-space is constructed by multiplying this material basis
with a positive coefficient. To construct an optimal material
parameter sub-space, a material parameter sensitivity
analysis is conducted to examine the sensitivity of the

2Their data and code is available at: http://gamma.cs.unc.edu/
VideoCloth

Fig. 5 Yang et al. [26] predicted the material type of the cloth in input videos
from the left and cloned those material on to the skirt. The simulated skirt are
shown on the right.

material parameters κ with respect to the amount of
deformation D(κ). Physically based cloth simulations are
used to generate a much larger number of data samples
within these sub-spaces that would otherwise be difficult or
time-consuming to capture. The cloth meshes are generated
through physically based simulation, then rendered to 2D
images with a randomly assigned texture. With the data
samples, they combine the image signal feature extraction
method, CNN, with the temporal sequence learning method,
LSTM, to learn the mapping from visual “appearance” to
“material”. As shown in Fig. 3, the CNN layer is used to
extract both low- and high-level visual features, while the
LSTM layer focuses on learning the mapping between the
material properties of the cloth and its sequential movement.

They demonstrated the proposed framework with the
application of “material cloning”. With the trained deep
neural network model being able to capture the cloth
motions (Fig. 4), the material type can be inferred from a
video recording the motion of the cloth in a fairly small
amount of time. The recovered material type can be
“cloned” on another piece of cloth or a piece of garment
as shown in Fig. 5.

In this work, the videos contain only a single piece of
cloth and the recorded cloth is not interacting with any other
object. While this is not always the case in real-world
scenarios, this method provides new insights on addressing
this challenging problem. A natural extension would be
to learn from videos of cloth directly interacting with the
human body, under varying lighting conditions and partial
occlusion.
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Fig. 6 Differentiable simulation embedding example from [19]. The loss can be backpropagated through the physics simulator to the neural network, enabling
learning tasks such as material estimation and motion control.

4.2 Optimization Using Differentiable Physics

Another approach to obtain the fabric material is to
measure the geometry difference directly during parameter
optimization. Assuming that the environment is known to
the system, the computation of the estimated motion and its
gradient w.r.t. the material parameters can be achieved using
differentiable simulation. A typical usage of differentiable
simulation is motion control (Fig. 6), where it measures
the difference to the target and backpropagate the loss to
the network. Similar processes can be applied to material
estimation as well. By measuring the distance to the target
as the loss and computing the corresponding gradients,
either in pixel space or in 3D space, the material parameters
can be learned or optimized to achieve the desired cloth
motion or visual effect. Recent differentiable physics work
include rigid body [5, 6], cloth [14], and particle-grid
system [8, 9]. The state-of-the-art work is from [14]3, where
they proposed a method to differentiate cloth simulation.
It is the first work to tackle high dimensional simulation
problem and to propose a general differentiable collision
handling algorithm. Later, a follow-up work [19] extends
the algorithm to be applicable to coupled dynamics with
rigid bodies.

In general, they follow the computation flow of the
common approach to cloth simulation: discretization using
the finite element method, integration using implicit Euler,
and collision response on impact zones. They use implicit
differentiation in the linear solve and the optimization, in
order to compute the gradient with respect to the input
parameters. The discontinuity introduced by the collision
response is negligible because the discontinuous states
constitute a zero-measure set. During the backpropagation
in the optimization, the gradient values can be directly
computed after QR decomposition of the constraint matrix.
In their pipeline, there are several techniques that can be
employed in other differentiable simulations.

3Their data and code is available at: https://gamma.umd.edu/
researchdirections/virtualtryon/differentiablecloth

4.2.1 Derivatives of the Physics Solve
In modern simulation algorithms, implicit Euler is often

used for stable integration results. Thus the mass matrix M

often includes the Jacobian of the forces. It is denoted as M̂
in order to mark the difference. A linear solve will be needed
to compute the acceleration since it is time-consuming to
compute M̂−1. They use implicit differentiation to compute
the gradients of the linear solve. Given an equation M̂a = f

with a solution z and the propagated gradient ∂L
∂a |a=z, where

L is the task-specific loss function, they derived the implicit
differentiation form to derive the gradients. We refer the
readers to the original paper [14] for more details.

4.2.2 Derivatives of the Collision Response
A general approach using LCP to integrating collision

constraints into physics simulation has been proposed.
However, constructing a static LCP is often impractical in
cloth simulation due to high dimensionality. Collisions and
contacts happen at each step are very sparse compared to the
complete set. Therefore, they use a dynamic approach that
incorporates collision detection and response.

Collision handling in their implementation is based on
impact zone optimization. It finds all colliding instances
using continuous collision detection and sets up the
constraints for all collisions. In order to introduce minimum
change to the original mesh state, a QP problem is developed
to solve for the constraints. Since the signed distance
function is linear in x, the optimization takes a quadratic
form, as shown originally in [14]:

minimize
z

1

2
(z− x)>W(z− x) (1)

subject to Gz+ h ≤ 0 (2)

where W is a constant diagonal weight matrix related to the
mass of each vertex, and G and h are constraint parameters.
They further denote the number of variables and constraints
by n and m, i.e. x ∈ Rn, h ∈ Rm, and G ∈ Rm×n. Note
that this optimization is a function with inputs x, G, and h,
and output z. The goal here is to derive ∂L

∂x , ∂L
∂G , and ∂L

∂h

given ∂L
∂z , where L refers to the loss function.
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Method
Runtime

(sec/step/iter)
Density

error (%)
Linear stretching
stiffness error (%)

Bending stiffness
error (%)

Simulation
error (%)

Baseline - 68± 46 160± 119 70± 42 12± 3.0
L-BFGS 2.89± 0.02 4.2± 5.6 72± 90 70± 43 4.9± 3.3
Liang et al. [14] 2.03± 0.06 1.8± 2.0 45± 41 77± 36 1.6± 1.4

Tab. 1 Results on the material parameter estimation task from [14]. Their proposed method runs faster than L-BFGS. Values of the material parameters are the
Frobenius norms of the difference normalized by the Frobenius norm of the target. Smaller error percentage is better. Values of the simulated result are the average
pairwise vertex distance normalized by the size of the cloth. The gradient-based method yields much smaller errors than the baselines.

When computing the gradient using implicit
differentiation, the dimensionality of the linear system
can be very high. Their key observation here is that
n >>m > rank(G), since one contact often involves 4
vertices (thus 12 variables) and some contacts may be
linearly dependent (e.g. multiple adjacent collision pairs).
They minimize the size of the linear equation based on the
QR decomposition of G, which is the key to accelerate
backpropagation of high dimensional QP problems.

One of their experiments shows its ability on material
parameter optimization, the aim of which is to learn the
material parameters of cloth from observation. The scene
features a piece of cloth hanging under gravity and subjected
to a constant wind force. The material model consists of
three parts: density d, stretching stiffness S, and bending
stiffness B. The stretching stiffness quantifies how large the
reaction force will be when the cloth is stretched out; the
bending stiffness models how easily the cloth can be bent
and folded.

Tab. 1 shows the estimation result. They achieve a
much smaller error in most measurements in comparison
to the baselines. The table shows that the linear part of
the stiffness matrix is optimized well. With the computed
gradient using their model, one can effectively optimize the
unknown parameters that dominate the cloth movement to
fit the observed data.

As a follow-up work, Qiao et al. extend the differentiable
simulation pipeline to couple with rigid body dynamics.
They formulate the dynamics using generalized coordinates:

d

dt

(
q

q̇

)
=

(
q̇

q̈

)
=

(
q̇

M−1f(q, q̇)

)
, (3)

and update the optimization formulation for collision
response accordingly (see [19] for details):

minimize
q′

1

2
(q− q′)>M̂(q− q′)

subject to Gf(q′) + h ≤ 0. (4)

Due to the inclusion of rigid bodies, the constraints
used in the optimization is no longer linear. When
computing gradients, they linearize the constraints around
the neighborhood as an approximation to enable the QR
decomposition for acceleration as previously mentioned.

5 Garment Modeling and Design

Realistic apparel model generation has become
increasingly popular, due to the rapid change of the
fashion trend and the growing need for garment model
in different applications such as virtual try-on. It is
already the case even for state-of-the-art interactive apparel
design systems [16]. For the application requirements,
it is important to have a general cloth model that can
represent a diverse set of garments. However, there are
many challenges in automatic garment model generation.
First, garments usually have different types of topology,
especially for fashion apparel, that makes it difficult to
design a universal generation pipeline. Moreover, it is often
not straightforward for the general garments design to be
retargeted onto another body shape, making it difficult for
customization.

Some previous work has addressed this problem to some
extent. Huang et al. [10] proposed an realistic 3D garment
generation algorithm based on front and back image
sketches, but it cannot retarget the generated garments to
other body shape easily. Wang et al. [23] proposed an
algorithm which can do retargeting conveniently, but have
limited topology like T-shirt or skirt. As such, there is no
recent work that addresses these two problems at the same
time.

We introduce a learning-based parametric generative
model to overcome the above difficulties, given garment
sewing patterns and human body shapes as input. One
possible approach would be to compute a displacement
image on the UV space of the human body as an unified
representation of the garment mesh. Different topology
and sizes of the garment are represented by different
values in the image. The 2D displacement image, as the
representation of the 3D garment mesh data, can then be fed
into conditional Generative Adversarial Network (cGAN)
for latent space learning. The 2D representation for the
garment mesh can transfer the irregular 3D mesh data to
regular image data where a traditional CNN can easily learn.
It can also extract the relative geometry information with
respect to the human body, enabling garment retargeting to
a different human body.
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6 Conclusion

Although Virtual Reality and digital try-on demonstrate
excellent potential and are rapidly developing, there remain
open problems to address before the online try-on systems
can be widely adopted. We listed three major challenges,
all of which can be addressed or further improved using
machine learning algorithms. For garment material
prediction, state-of-the-art methods are still limited in that
the training data is highly constrained: the scenario contains
only a piece of cloth floating in the wind. To improve
its applicability on daily tasks, it is necessary to focus
on solving the problem on a more diverse set of inputs.
Predicting the material from a garment on a fixed human
body could be a good start, before generalizing to arbitrary
human motions and predicting multiple garments on the
same body. In the area of human shape estimation, it
would be interesting to learn how external constraints
could improve the estimation accuracy. For example, the
shape and size of the garment are hard constraints that
the predicted body should conform. While optimization-
based methods can integrate these constraints fairly easily,
it remains illusive for learning-based approaches. One
possibility is to jointly estimate body and garment together
and introduce intersection loss in between. This approach
would require a new solution to the open problem of unified
deep garment representation, if we do not want to train one
model for every garment type, which could be even more
challenging. We believe that substantial breakthroughs in
digital try-on are achievable with more investigation towards
these directions.
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