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Abstract

We propose a scalable neural network framework to re-
construct the 3D mesh of a human body from multi-view
images, in the subspace of the SMPL model [23]. Use of
multi-view images can significantly reduce the projection
ambiguity of the problem, increasing the reconstruction ac-
curacy of the 3D human body under clothing. Our exper-
iments show that this method benefits from the synthetic
dataset generated from our pipeline since it has good flex-
ibility of variable control and can provide ground-truth for
validation. Our method outperforms existing methods on
real-world images, especially on shape estimations.

1. Introduction
Human body reconstruction, consisting of pose and

shape estimation, has been widely studied in a variety of
areas, including digital surveillance, computer animation,
special effects, and virtual/augmented environments. Yet, it
remains a challenging and popular topic of interest. While
direct 3D body scanning can provide excellent and suffi-
ciently accurate results, its adoption is somewhat limited
by the required specialized hardware. We propose a practi-
cal method that can estimate body pose and shape directly
from a small set of images (typically 3 to 4) taken at sev-
eral different view angles, which can be adopted in many
applications, such as Virtual Try-On. Compared to exist-
ing scanning-based reconstruction, ours is much easier to
use. Compared to previous image-based estimation meth-
ods, ours has a higher shape estimation accuracy when the
input human body is not within a normal range of body-
mass index (BMI) and/or when the body is wearing loose
clothing. Furthermore, our framework is flexible in the
number of images used, which considerably extends its ap-
plicability.

In contrast to many existing methods, we use multi-view
images as input. We use the word “multi-view” to refer pho-
tos taken of the same person with similar poses from differ-
ent view angles. They can be taken using specialized multi-
view cameras, but it is not necessary (Sec. 6.4). Single-view
images often lack the necessary and complete information

to infer the pose and shape of a human body, due to the
nature of projection transformation. Although applying a
predefined prior can alleviate this ambiguity, it is still insuf-
ficient in several cases, especially when a part of the body
is occluded by clothing, or when the pose direction is per-
pendicular to the camera viewing plane. For example, when
the human is walking towards the camera, it can be difficult
to distinguish the difference between a standing vs. walk-
ing pose using a direct front-view image, while a side-view
image could be more informative of the posture. By obtain-
ing information from multiple view angles, the ambiguity
from projection can be considerably reduced, and the body
shape under loose garments can also be more accurately re-
covered.

Previous work on pose and shape estimation of a human
body (see Sec. 2) mostly rely on optimization. One of the
most important metrics used in these methods is the dif-
ference between the original and the estimated silhouette.
As a result, these methods cannot be directly applied to im-
ages where the human wears loose garments, e.g. long coat,
evening gown. The key insight of our method is: when esti-
mating a person’s shape, how the human body is interacting
with the cloth, e.g. how a t-shirt is stretched out as pushed
by the stomach or the chest, provides more information than
the silhouette of the person. So image features, especially
those on clothes, play an important role in the shape estima-
tion. With recent advances in deep learning, it is widely be-
lieved that the deep Convolutional Neural Network (CNN)
structure can effectively capture these subtle visual details
as activation values. We propose a multi-view multi-stage
network structure to effectively capture visual features on
garments from different view angles to more accurately in-
fer pose and shape information.

Given a limited number of images, we incorporate prior
knowledge about the human body shape to be reconstructed.
Specifically, we propose to use the Skinned Multi-Person
Linear (SMPL) model [23], which uses Principal Compo-
nent Analysis (PCA) coefficients to represent human body
shapes and poses. In order to train the model to accu-
rately output the coefficients for the SMPL model, a suf-
ficient amount of data containing ground-truth information



is required. However, to the best of our knowledge, no
such dataset exists to provide multiple views of a loosely
clothed body with its ground-truth shape parameters (i.e.
raw mesh). Previous learning-based methods do not ad-
dress the shape (geometry) recovery problem [26] or only
output one approximation close to the standard mean shape
of the human body [19], which is insufficient when recover-
ing human bodies with largely varying shapes. Taking ad-
vantage of physically-based simulation, we design a system
pipeline to generate a large number of multi-view human
motion sequences with different poses, shapes, and clothes.
By training on the synthetic dataset with ground-truth shape
data, our model is “shape-aware”, as it captures the statisti-
cal correlation between visual features of garments and hu-
man body shapes. We demonstrate in the experiments that
the neural network trained using additional simulation data
can considerably enhance the accuracy of shape recovery.

To sum up, the key contributions of our work include:
• A learning-based shape-aware human body mesh re-

construction using SMPL parameters for both pose and
shape estimation that is supervised directly on shape
parameters.
• A scalable, end-to-end, multi-view multi-stage learn-

ing framework to account for the ambiguity of the 3D
human body (geometry) reconstruction problem from
2D images, achieving improved estimation results.
• A large simulated dataset, including clothed human

bodies and the corresponding ground-truth parameters,
to enhance the reconstruction accuracy, especially in
shape estimation, where no ground-truth or supervi-
sion is provided in the real-world dataset.
• Accurate shape recovery under occlusion of garments

by (a) providing the corresponding supervision and (b)
deepening the model using the multi-view framework.

2. Related Work
In this section, we survey recent works on human body

pose and shape estimation, neural network techniques, and
other related work that make use of synthetic data.

2.1. Human Body Pose and Shape Recovering

Human body recovery has gained substantial interest due
to its importance in a large variety of applications, such
as virtual environments, computer animation, and garment
modeling. However, the problem itself is naturally ambigu-
ous, given limited input and occlusion. Previous works
reduce this ambiguity using different assumptions and in-
put data. They consist of four main categories: pose from
images, pose and shape from images under tight clothing,
scanned meshes, and images with loose clothing.
Pose From Images. Inferring 2D or 3D poses in images of
one or more people is a popular topic in Computer Vision
and has been extensively studied [31, 42, 43, 54, 55]. We

refer to a recent work, VNect by Mehta et al. [26] that is
able to identify human 3D poses from RGB images in real
time using a CNN. By comparison, our method estimates
the pose and shape parameters at the same time, recovering
the entire human body mesh rather than only the skeleton.
Pose and Shape From Images under Tight Clothing. Pre-
vious work [3, 6, 10, 11, 12, 18] use the silhouette as the
main feature or optimization function to recover the shape
parameters. As a result, these methods can only be used
when the person is wearing tight clothes, as shown in ex-
amples [41, 47]. By training on images with humans under
various garments both in real and synthetic data, our method
can learn to capture the underlying human pose and shape
based on image features.
Pose and Shape From Scanned Meshes. One major chal-
lenge of recovering human body from scanned meshes is
to remove the cloth mesh from the scanned human body
wearing clothes [34]. Hasler et al. [13] used an iterative ap-
proach. They first apply a Laplacian deformation to the ini-
tial guess, before regularizing it based on a statistical human
model. Wuhrer et al. [50] used landmarks of the scanned
input throughout the key-frames of the sequences to opti-
mize the body pose, while recovering the shape based on
the ‘interior distance’ that helps constrain the mesh to stay
under the clothes, with temporal consistency from neigh-
boring frames. Yang et al. [51] applies a landmark track-
ing algorithm to prevent excessive human labor. Zhang et
al. [53] took more advantages of the temporal information
to detect the skin and cloth region. As mentioned before,
methods based on scanned meshes are limited: the scan-
ning equipment is expensive and not commonly used. Our
method uses RGB images that are more common and thus
much more widely applicable.
Pose and Shape from Images under Clothing. Bălan et
al. [2] are the first to explicitly estimate pose and shape from
images of clothed humans. They relaxed the loss on clothed
regions and used a simple color-based skin detector as an
optimization constraint. The performance of this method
can be easily degraded when the skin detector is not help-
ful, e.g. when people have different skin colors or wear long
sleeves. However, our method is trained on a large num-
ber of images, which does not require this constraint. Bogo
et al. [4] used 2D pose machines to obtain joint positions
and optimizes the pose and shape parameters based on joint
differences and inter-penetration error. Lassner et al. [21]
created a semi-automatic annotated dataset by incorporat-
ing a silhouette energy term on SMPLify [4]. They trained
a Decision Forest to regress the parameter based on a much
more dense landmark set provided by the SMPL model [23]
during the optimization. Constraining the silhouette en-
ergy effect to a human body parameter subspace can reduce
the negative impact from loose clothing, but their annotated
data are from the optimization of SMPLify [4], which has



introduced errors inherently. In contrast, we generate a large
number of human body meshes wearing clothes, with the
pose and shape ground-truth, which can then train the neu-
ral network to be “shape-aware”.

2.2. Learning-Based Pose/Shape Estimations

Recently a number of methods have been proposed to
improve the 3D pose estimation with calibrated multi-view
input, either using LSTM [46, 29], auto-encoder [36, 45]
or heat map refinement [32, 44]. They mainly focus on 3D
joint positions without parameterization, thus not able to ar-
ticulate and animate. Choy et al. [7] proposed an LSTM-
based shape recovery network for general objects. Varol et
al. [48] proposed a 2-step estimation on human pose and
shape. However, both methods are largely limited by the
resolution due to the voxel representation. In contrast, our
method outputs the entire body mesh with parameteriza-
tion, thus is articulated with a high-resolution mesh qual-
ity. Also, our method does not need the calibration of the
camera, which is more applicable to in-the-wild images.
Kanazawa et al. [19] used an iterative correction frame-
work and regularized the model using a learned discrimi-
nator. Since they do not employ any supervision other than
joint positions, the shape estimation can be inaccurate, espe-
cially, when the person is relatively over-weighted. In con-
trast, our model is more shape-aware due to the extra super-
vision from our synthetic dataset. Recent works [30, 33, 20]
tackle the human body estimation problem using various
approaches; our method offers better performance in ei-
ther single- or multi-view inputs by comparison (see Ap-
pendix C).

2.3. Use of Synthetic Dataset

Since it is often time- and labor-intensive to gather a
dataset large enough for training a deep neural network, an
increasing amount of attention is drawn to synthetic dataset
generation. Recent studies [5, 52] have shown that using a
synthetic dataset, if sufficiently close to the real-world data,
is helpful in training neural networks for real tasks. Varol et
al. [49] built up a dataset (SURREAL) which contains hu-
man motion sequences with clothing using the SMPL model
and CMU MoCap data [8]. While the SURREAL dataset is
large enough and is very close to our needs, it is still insuf-
ficient in that (a) the clothing of the human is only a set of
texture points on the body mesh, meaning that it is a tight
clothing, (b) the body shape is drawn from the CAESAR
dataset [37], where the uneven distribution of the shape pa-
rameters can serve as a “prior bias” to the neural network,
and (c) the data only consists of single view images, which
is not sufficient for our training. Different from [5, 49],
our data generation pipeline is based on physical simulation
rather than pasting textures on the human body, enabling
the model to learn from more realistic images where the hu-

man is wearing looser garments. Recent works [39, 1] also
generate synthetic data to assist training, but their datasets
have only very limited variance on pose, shape, and textures
to prevent from overfitting. In contrast, our dataset consists
of a large variety of different poses, shapes, and clothing
textures.

3. Overview
In this section, we give an overview of our approach.

First, we define the problem formally. Then, we introduce
the basic idea of our approach.
Problem Statement: Given a set of multi-view images, I1
. . . In, taken for the same person with the same pose, re-
cover the underlying human body pose and shape.

In the training phase, we set n = 4, i.e. by default we
take four views of the person: front, back, left and right,
although the precise viewing angles and their orders are
not required, as shown in Sec. 4.3. To extend our frame-
work to be compatible with single view images, we copy
the input image four times as the input. For more detail
about image ordering and extensions to other multi-view
input, please refer to Sec. 4.3. We employ the widely-used
SMPL model [23] as our mesh representation, for its abil-
ity to express various human bodies using low dimensional
parametric structures.

As mentioned before, this problem suffers from ambi-
guity issues because of the occlusions and the camera pro-
jection. Directly training on one CNN as the regressor can
easily lead to the model getting stuck in local minima, and
it cannot be adapted to an arbitrary number of input images.
Inspired by the residual network structure [15], we pro-
pose a multi-view multi-stage framework (Sec. 4) to address
this problem. Since real-world datasets suffer from limited
foreground/background textures and ground-truth pose and
shape parameters, we make use of synthetic data as addi-
tional training samples (Sec. 5) so that the model can be
trained to be more shape-aware.

4. Model Architecture
In this section, we describe the configuration of our net-

work model. As shown in Fig. 1, we iteratively run our
model for several stages of error correction. Inside each
stage, the multi-view image input is passed on one at a
time. At each step, the shared-parameter prediction block
computes the correction based on the image feature and the
input guesses. We estimate the camera and the human body
parameters at the same time, projecting the predicted 3D
joints back to 2D for loss computation. The estimated pose
and shape parameters are shared among all views, while
each view maintains its camera calibration and the global
rotation. The loss at each step is the sum of the joint loss
and the human body parameter loss:

Li = λ0L2Djoint + λ1L3Djoint + LSMPL (1)



Figure 1: The network structure. Multi-view images are first passed through an image encoder to get feature vectors f1, ..., fn. With initial
guesses of the camera parameters Θ1,i

c and the human body parameters Θ1,1
b , the network starts to estimate the parameters stage by stage

and view by view. Each regression block at the ith stage and the jth view regresses the corrective values from image feature fj (red) and
previous guesses Θi,j

c (blue) and Θi,j
b (green). The results will be added up to the input values and passed to future blocks. While the new

human body parameters (green) can be passed to the next regression block, the view-specific camera parameters (blue) can only be passed
to the next stage of the same view. Finally, the predictions of the n views in the last stage are outputted to generate the prediction.

where λ0 and λ1 scale the units and control the importance
of each term. We use L1 loss on 2D joints and L2 loss on
others. LSMPL is omitted if there is no ground-truth.

4.1. 3D Body Representation

We use the Skinned Multi-Person Linear (SMPL)
model [23] as our human body representation. It is a genera-
tive model trained from human mesh data. The pose param-
eters are the rotations of 23 joints inside the body, and the
shape parameters are extracted from PCA. Given the pose
and shape parameter, the SMPL model can then generate a
human body mesh consisting of 6980 vertices:

X(θ, β) = WG(θ)(X0 + Sβ + PR(θ)) (2)

where X ∈ R6980 × R3 is the computed vertices, θ ∈ R72

are the rotations of each joint plus the global rotation, β ∈
R10 are the PCA coefficients, W,S and P are trained ma-
trices, G(θ) is the global transformation, X0 are the mean
body vertices, and R(θ) is the relative rotation matrix.

For the camera model, we use orthogonal projection
since it has very few parameters and is a close approxima-
tion to real-world cameras when the subject is sufficiently
far away, which is mostly the case. We project the computed
3D body back to 2D for loss computation:

x = sX(θ, β)RT + t (3)

where R ∈ R2 × R3 is the orthogonal projection matrix, s
and t are the scale and the translation, respectively.

4.2. Scalable Multi-View Framework

Our proposed framework uses a recurrent structure, mak-
ing it a universal model applicable to the input of any

number of views. At the same time, it couples the share-
able information across different views so that the human
body pose and shape can be optimized using image fea-
tures from all views. As shown in Fig. 1, we use a multi-
view multi-stage framework to couple multiple image in-
puts, with shared parameters across all regression blocks.
Since the information from multiple views can interact with
each other multiple times, the regression needs to run for
several iterative stages. We choose to explicitly express this
shared information as the predicted human body parameter
since it is meaningful and also contains all of the informa-
tion of the human body. Therefore the input of a regression
block is the corresponding image feature vector and the pre-
dicted camera and human body parameters from the previ-
ous block. Inspired by the residual networks [15], we pre-
dict the corrective values instead of the updated parameters
at each regression block to prevent gradient vanishing.

We have n blocks at each stage, where n is the num-
ber of views. Since all the input images contain the same
human body with the same pose, these n blocks should out-
put the same human-specific parameters but possibly differ-
ent camera matrices. Thus we share the human parameter
output across different views and the camera transforma-
tion across different stages of the same view. More specifi-
cally, the regression block at the ith stage and the jth view
takes an input of (fj ,Θ

i,j
c ,Θi,j

b ), and outputs the correc-
tion ∆Θi,j

c ,∆Θi,j
b , where fj denotes the jth image feature

vector, Θi,j
c is the camera matrices and Θi,j

b is the human
parameters. After that, we pass Θi+1,j

c = Θi,j
c + ∆Θi,j

c

to the next stage of the block at the same view, while we
pass Θi,j+1

b = Θi,j
b + ∆Θi,j

b to the next block of the chain



Figure 2: Detailed network structure of the regression block at the
ith stage and the jth view. fj denotes the image feature of the jth

view, Θi,j
c denotes the camera parameters, and Θi,j

b denotes the
human body parameters.

(Fig. 1). At last, we compute the total loss as the average
of the prediction of all n views in the final stage. Different
from static multi-view CNNs which have to fix the number
of inputs, we make use of the RNN-like structure in a cyclic
form to accept any number of views, and avoid the gradient
vanishing by using the error correction framework.

4.3. Training and Inferring

Intuitively we use n = 4 in our training process, since
providing front, back, left, and right views can often give
sufficient information about the human body. We choose
a random starting view from the input images to account
for the potential correlation between the first view and the
initial guess. A specific order of the input views is not re-
quired since (a) the network parameters of each regression
block are identical, and (b) none of the camera rotation in-
formation are shared among different views. To make use
of large public single-view datasets, we copy each instance
to 4 identical images as our input.

During inference, our framework can adapt to images
with any number of views n as shown below. If n ≤ 4, we
use the same structure as used for training. We can pad any
of the input images to fill up the remaining views. As each
view is independent in terms of global rotation, the choice
of which view to pad does not matter. If n > 4, we extend
our network to n views. Since this is an error-correction
structure, the exceeded values introduced by extra steps can
be corrected back. Note that the number of camera parame-
ter corrections of each view always remains the same, which
is the number of stages.

4.4. Implementation Details

During training, besides our synthetic dataset for en-
hancing the shape estimation (detailed discussion in Sec. 5),
we train on MS-COCO [22], MPI INF 3DHP [24] and Hu-
man3.6M [17] datasets. Each mini-batch consists of half
single view and half multi-view samples. Different from
HMR [19], we do not use the discriminator. This is be-
cause (a) we initialized our parameters as the trained model
of HMR [19], (b) the ground-truth given by our dataset
serves as the regularization to prevent unnatural pose not
captured by joint positions (e.g. foot orientations), and most

importantly, (c) the ground-truth SMPL parameters from
their training dataset does not have sufficient shape variety.
Enforcing the discriminator to mean-shape biased dataset
will prevent the model to predict extreme shapes. We use
50-layer ResNet-v2 [16] for image feature extraction. The
detailed structure inside the regression block is shown in
Fig. 2. We fix the number of stages as 3 throughout the en-
tire training and all testing experiments. The learning rate
is set to 10−5, and the training lasts for 20 epochs. Training
on a GeForce GTX 1080 Ti GPU takes about one day. Our
synthetic dataset will be released with the paper.

5. Data Preparation
To the best of our knowledge, there is no public real-

world dataset that captures motion sequences of human
bodies, annotated with pose and shape (either using a para-
metric model or raw meshes), with considerable shape vari-
ation and loose garments. This lack of data, in turn, forces
most of the previous human body estimations to focus only
on joints. The most recent work [19] that recovers both
pose and shape of human body does not impose an explicit
shape-related loss function, so their model is not aware of
varying human body shapes. In order to make our model
shape-aware under clothing, we need data with ground-truth
human body shapes where the garments should be dressed
rather than pasted on the skin. A large amount of data is
needed for training; sampling real-world data that captures
the ground-truth shape parameters is both challenging and
time-consuming. We choose an alternate method — using
synthesized data. In this section, we propose an automatic
pipeline to generate shape-aware training data, to enhance
the shape estimation performance.

5.1. Parameter Space Sampling

We employ the SMPL model [23], which contains pose
and shape parameters for human body. Pose parameters
are rotation angles of joints. To sample meaningful human
motion sequences in daily life, we use the CMU MoCap
dataset [8] as our pose subspace. The shape parameters
are principle component weights. It is not ideal to sam-
ple the shape parameters using Gaussian distribution; oth-
erwise there will be many more mean-shape values than ex-
treme ones, resulting in an unbalanced training data. To
force the model to be more shape-aware, we choose to uni-
formly sample values at [µ − 3σ, µ + 3σ] instead, where µ
and σ represent the mean value and standard deviation of
the shape parameters.

5.2. Human Body Motion Synthesis

After combining CMU MoCap pose data with the sam-
pled shape parameters, it is likely that the human mesh
generated by the SMPL model has inter-penetration due to
the shape difference. Since inter-penetration is problematic



Figure 3: Examples of rendered synthetic images. We use a large
number of real-world backgrounds and cloth textures so that the
rendered images are realistic and diverse.

for cloth simulation, we design an optimization scheme to
avoid it in a geometric sense:

min ‖x− x0‖ s.t. g(x) + ε ≤ 0 (4)

where x and x0 stand for the vertex positions, g(x) is the
penetration depth, and ε is designed to reserve space for the
garment. The main idea here is to avoid inter-penetrations
by popping vertices out of the body, but at the same time
keeping the adjusted distance as small as possible, so that
the body shape does not change much. This practical
method works sufficiently well in most of the cases.

5.3. Cloth Registration and Simulation

Before we can start to simulate the cloth on each body
generated, we first need to register them to the initial pose
of the body. To account for the shape variance of different
bodies, we first manually register the cloth to one of the
body meshes. We mark the relative rigid transformation T
of the cloth. For other body meshes, we compute and apply
the global transformation, including both the transformation
T and the scaling between two meshes.At last, we use the
similar optimization scheme described in Sec. 5.2 to avoid
any remaining collisions since it can be assumed that the
amount of penetration after the transformation is small.

We use ArcSim [28] as the cloth simulator. We do not
change the material parameters during the data generation.
However, we do randomly sample the tightness of the cloth.
We generally want both tight and loose garments in our
training data.

5.4. Multi-View Rendering

We randomly apply different background and cloth tex-
tures in different sets of images. We keep the same cloth
textures but apply different background across different
views. We use the four most common views (front, back,
left, and right), which are defined w.r.t. the initial human
body orientation and fixed during the rendering. We sample
100 random shapes and randomly apply them to 5 pose se-
quences in the CMU MoCap dataset (slow and fast walking,

running, dancing, and jumping). After resolving collisions
described in 5.3, we register two sets of clothes on it, one
with a dress and the other with a t-shirt, pants, and jacket
(Fig. 3). The pose and garment variety is arguably suffi-
cient because (a) they provide most commonly seen poses
and occlusions, and (b) it is an auxiliary dataset providing
shape ground-truth which is jointly trained with real-world
datasets that have richer pose ground-truth. We render two
instances of each of the simulated frames, with randomly
picked background and cloth textures. Given an average
of 80 frames per sequence, we have generated 32,000 in-
stances, with a total number of 128,000 images. We set the
first 90 shapes as the training set and the last 10 as the test
set. We ensure the generalizability across pose and cloth-
ing by coupling our dataset with other datasets with joint
annotations (Sec. 4.4).

6. Results

We use the standard test set in Human3.6M and the vali-
dation set of MPI INF 3DHP to show the performance gain
by introducing multi-view input. Since no publicly avail-
able dataset has ground-truth shape parameters or mesh
data, or data contains significantly different shapes from
those within the normal range of BMI (e.g. overweight or
underweight bodies), we test our model against prior work
(as the baseline) using the synthetic test set. Also, we test
on real-world images to show that our model is more shape-
aware than the baseline method – qualitatively using on-
line images and quantitatively using photographs taken with
hand-held cameras.

Our method does not assume prior knowledge of the
camera calibration so the prediction may have a scale dif-
ference compared to the ground-truth. There is also extra
translation and rotation due to image cropping. To make a
fair comparison against other methods, we report the met-
rics after a rigid alignment, following [19]. We also report
the metrics before rigid alignment in the appendix.

6.1. Ablation Study

We conduct an ablation study to show the effectiveness
of our model and the synthetic dataset. In the experiments,
HMR [19] is fine-tuned with the same learning setting.

6.1.1 Pose Estimation

We tested our model on datasets using multi-view images to
demonstrate the strength of our framework. We use Mean
Per Joint Position Error (MPJPE) of the 14 joints of the
body, as well as Percentage of Correct Keypoints (PCK) at
the threshold of 150mm along with Area Under the Curve
(AUC) with threshold range 0-150mm [25] as our metrics.
PCK gives the fraction of keypoints within an error thresh-
old, while AUC computes the area under the PCK curve,
presenting a more detailed accuracy within the threshold.



We use the validation set of MPI INF 3DHP [19] as an
additional test dataset since it provides multi-view input.
It is not used for validation during our training. We also
evaluated the original test set, which consists of single-view
images. Please refer to our appendix in the supplementary
document for this comparison result.
Comparison: As shown in Table 1 and 2, under the same
training condition, our model in single-view has similar, if
not better, results in all experiments. Meanwhile, our model
in multi-view achieves much higher accuracy.

Method
MPJPE

w/ syn. training
MPJPE

w/o syn. training
HMR 60.14 58.1

Ours (single) 58.55 59.09
Ours (multi) 45.13 44.4

Table 1: Comparison results on Human3.6M using MPJPE.
Smaller errors implies higher accuracy.

Method
PCK/AUC/MPJPE

w/ syn. training
PCK/AUC/MPJPE
w/o syn. training

HMR 86/49/89 88/52/83
Ours (single) 88/52/84 87/52/85
Ours (multi) 95/63/62 95/65/59

Table 2: Comparison results on MPI INF 3DHP in PCK/AUC/
MPJPE. Better results have higher PCK/AUC and lower MPJPE.

6.1.2 Shape Estimation

To the best of our knowledge, there is no publicly avail-
able dataset that provides images with the captured human
body mesh or other representation among a sufficiently di-
verse set of human shapes. Since most of the images-based
datasets are designed for joint estimation, we decide to use
our synthetic test dataset for large-scale statistical evalua-
tion, and later compare with [19] using real-world images.

Other than MPJPE for joint accuracy, we use the Haus-
dorff distance between two meshes to capture the shape dif-
ference to the ground-truth. The Hausdorff distance is the
maximum shortest distance of any point in a set to the other
set, defined as follows:

d(V1, V2) = max(d̂(V1, V2), d̂(V2, V1)) (5)

d̂(V1, V2) = max
u∈V1

min
v∈V2

‖u− v‖2 (6)

where V1 and V2 are the vertex set of two meshes in the
same ground-truth pose, in order to negate the impact of
different poses. Intuitively a Hausdorff distance of d means
that by moving each vertex of one mesh by no more than d
away, two meshes will be exactly the same.

As shown in Table 3, our model with multi-view input
achieves the smallest error values, when compared to two
other baselines. After joint-training with synthetic data, all

Method
MPJPE/HD

w/ syn. training
MPJPE/HD

w/o syn. training
HMR 42/83 89/208

Ours (single) 44/65 102/283
Ours (multi) 27/53 84/273

Table 3: Comparison results on our synthetic dataset in
MPJPE/Hausdorff Distance(HD). Better results have lower values.

models perform better in shape estimation, while maintain-
ing similar results using other metrics (Table 1 and 2), i.e.
they do not overfit. The joint errors of the HMR [19] are
fairly good, so they can still recognize the synthesized hu-
man in the image. However, a larger Hausdorff distance
indicates that they lose precision on the shape recovery.

Adding our synthetic datasets for training can effectively
address this issue and thereby provide better shape estima-
tion. We achieved a much smaller Hausdorff distance (with
syn. training) even only using single view. This is because
our refinement framework is effectively deeper, aiming at
not only the pose but also the shape estimation, which is
much more challenging than the pose-only estimation. With
the same method, multi-view inputs can further improve the
accuracy of shape recovery compared to results using only
one single-view image.

6.2. Comparisons with Multi-View Methods

Since other multi-view methods only estimate human
poses but not the entire body mesh, we compare the pose
estimation results to them in Human3.6M. As shown in Ta-
ble 4, we achieved state-of-the-art performance even when
camera calibration is unknown and no temporal informa-
tion is provided. As stated in Sec. 6, unknown camera pa-
rameters result in a scaling difference to the ground-truth,
so the joint error would be worse than what it actually
is. After the Procrustes alignment that accounts for this
effect, our method achieves the best MPJPE compared to
other methods. Another potential source of the error is that
our solution is constrained in a parametric subspace, while
other methods output joint positions directly. In contrast,
our method computes the entire human mesh in addition
to joints and the result can be articulated and animated di-
rectly.
6.3. Real-World Evaluations

We first conduct a study on how our method performs
differently with either single- or multi-view inputs under
various conditions. Our test subjects have two poses: stand-
ing and sitting, and the model is additionally tested on two
sets of variants from the images. One is slightly dimmed,
and the other has a large black occlusion at the center of the
first image. We use the percentage of errors from common
body measurements used by tailors (i.e. lengths of neck,
arm, leg, chest, waist, and hip), which is obtained using
direct tape measurements on the subjects. We report the av-



Method MPJPE Known Camera? Run Time Temporal Opt? Articulated? Shape?
Rhodin et al. [35] - Yes 0.025fps Yes No Mix-Gaussian
Rhodin et al. [36] 98.2 Yes - Yes No No

Pavlakos et al. [32] 56.89 Yes - No No No
Trumble et al. [46] 87.3 Yes 25fps Yes No No
Trumble et al. [45] 62.5 Yes 3.19fps Yes No Volumetric
Núñez et al. [29] 54.21 Yes 8.33fps Yes No No
Tome et al. [44] 52.8 Yes - No No No

Ours 79.85 No 33fps No Yes ParametricOurs (PA) 45.13

Table 4: Comparison on Human3.6M with other multi-view methods. Our method has comparable performance with previous work even
without the assistance of camera calibration or temporal information. PA stands for Procrustes Aligned results for ours.

Method Standing Sitting
HMR [19] 7.72% 7.29%

BodyNet [48] 13.72% 29.30%
Ours (single) 6.58% 10.18%
Ours (multi) 6.23% 5.26%

Table 5: Comparison results on tape-measured data using average
relative errors (lower the better).

(a) The input image. (b) Our result. (c) HMR.

Figure 4: Prediction results compared to HMR. Our model can
better capture the shape of the human body. The recovered legs
and chest are closer to the person in the image.

erage relative error in Table 5. The detailed errors of each
measurement are also provided in the appendix. It is ob-
served that single-view results are affected by the “occluded
sitting” case, while the multi-view input can largely reduce
the error. The reason why HMR is not impacted is that
they uniformly output average human shapes for all input
images. We also report results from BodyNet [48]. Bo-
dyNet outputs voxelized mesh and needs a time-consuming
optimization to output the SMPL parameters. Its accuracy
largely depends on the initial guess. Therefore, it resulted
in a large amount of errors on the “sitting” case.

We also tested our model on other online images, where
no such measurement can be done. As shown in Fig. 4,
HMR [19] can predict the body pose but fails on inferring
the person’s shape. On the contrary, our model not only
refines the relative leg orientations but also largely respects
and recovers the original shape of the body. More examples
are shown in our supplemental document and video.

6.4. Multi-View Input in Daily Life

It is often difficult to have multiple cameras from dif-
ferent view angles capturing a subject simultaneously. Our
model has the added benefit of not requiring the multi-view
input be taken with the exact same pose. As the model has
an error correction structure, it can be applied as long as the
poses of the four views are not significantly different. We
do not impose any assumptions on the background, so the
images can be even taken with a fixed camera and a “rotat-
ing” human subject, which is the typically case when the
method is used in applications like virtual try-on.

7. Conclusion and Future Work
We proposed a novel multi-view multi-stage framework

for pose and shape estimation. The framework is trained on
datasets with at most 4 views but can be naturally extended
to an arbitrary number of views. Moreover, we introduced
a physically-based synthetic data generation pipeline to en-
rich the training data, which is very helpful for shape es-
timation and regularization of end effectors that traditional
datasets do not capture. Experiments have shown that our
trained model can provide equally good pose estimation as
state-of-the-art using single-view images, while providing
considerable improvement on pose estimation using multi-
view inputs and a better shape estimation across all datasets.

While synthetic data improves the diversity of human
bodies with ground-truth parameters, a more convenient
cloth design and registration are needed to minimize the
performance gap between real-world images and synthetic
data. In addition, other variables such as hair, skin color,
and 3D backgrounds are subtle elements that can influence
the perceived realism of the synthetic data at the higher ex-
pense of a more complex data generation pipeline. With
the recent progress in image style transfer using GAN [27],
a promising direction is to transfer the synthetic result to
more realistic images to further improve the learning result.

Acknowledgement: This work is supported by National
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and Markus Gross. Hs-nets: Estimating human body shape
from silhouettes with convolutional neural networks. In
3D Vision (3DV), 2016 Fourth International Conference on,
pages 108–117. IEEE, 2016. 2

[11] Peng Guan, Alexander Weiss, Alexandru O Balan, and
Michael J Black. Estimating human shape and pose from
a single image. In Computer Vision, 2009 IEEE 12th Inter-
national Conference on, pages 1381–1388. IEEE, 2009. 2

[12] Nils Hasler, Hanno Ackermann, Bodo Rosenhahn, Thorsten
Thormählen, and Hans-Peter Seidel. Multilinear pose and
body shape estimation of dressed subjects from image sets.
In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 1823–1830. IEEE, 2010. 2

[13] Nils Hasler, Carsten Stoll, Bodo Rosenhahn, Thorsten
Thormählen, and Hans-Peter Seidel. Estimating body shape

of dressed humans. Computers & Graphics, 33(3):211–216,
2009. 2

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. CoRR, abs/1703.06870, 2017. 12

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3, 4

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 5

[17] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-
ments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2014. 5

[18] Arjun Jain, Thorsten Thormählen, Hans-Peter Seidel, and
Christian Theobalt. Moviereshape: Tracking and reshap-
ing of humans in videos. In ACM Transactions on Graphics
(TOG), volume 29, page 148. ACM, 2010. 2

[19] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In Computer Vision and Pattern Regognition (CVPR),
2018. 2, 3, 5, 6, 7, 8, 12, 13, 14

[20] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4501–4510, 2019. 3, 13

[21] Christoph Lassner, Javier Romero, Martin Kiefel, Federica
Bogo, Michael J Black, and Peter V Gehler. Unite the peo-
ple: Closing the loop between 3d and 2d human representa-
tions. In IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), volume 2, page 3, 2017. 2

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5

[23] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM Transactions on Graphics (TOG),
34(6):248, 2015. 1, 2, 3, 4, 5

[24] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In 3D Vision (3DV), 2017
Fifth International Conference on. IEEE, 2017. 5

[25] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In 3D Vision (3DV), 2017
International Conference on, pages 506–516. IEEE, 2017. 6,
13

[26] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko,
Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel,



Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect:
Real-time 3d human pose estimation with a single rgb cam-
era. ACM Transactions on Graphics (TOG), 36(4):44, 2017.
2, 13

[27] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. Ganerated hands for real-time 3d hand
tracking from monocular rgb. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 49–59, 2018. 8

[28] Rahul Narain, Armin Samii, and James F O’Brien. Adaptive
anisotropic remeshing for cloth simulation. ACM transac-
tions on graphics (TOG), 31(6):152, 2012. 6
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Appendix A. Extra Test Results
Table 6 and 8 shows the test results before Procrustes

Alignment in MPI INF 3DHP validation set and Hu-
man3.6M, respectively. The same conclusion about over-
fitting and multi-view improvement as the main text can
also be drawn from these data.

Table 7 shows the result in MPI INF 3DHP test dataset.
Since there is only one view fed into the model, the results
are similar.

Method
PCK/AUC/MPJPE

w/ syn. training
PCK/AUC/MPJPE
w/o syn. training

HMR [19] 66/33/141 71/36/129
Ours (single) 69/32/139 68/33/138
Ours (multi) 72/34/128 72/35/126

Table 6: Results on MPI INF 3DHP, validation set, before Pro-
crustes aligment.

Method
PCK/AUC/MPJPE

w/ syn. training
PCK/AUC/MPJPE
w/o syn. training

HMR [19] 65/30/139 65/29/137
HMR (PA) 84/47/91 85/48/89

Ours 65/29/142 66/29/137
Ours (PA) 85/49/89 86/49/89

Table 7: Results on MPI INF 3DHP, test set. The results of [19]
are tested on cropped images by Mask-RCNN [14] so the values
have minor difference than their reported ones. Only single view
is available in this dataset.

Appendix B. Additional Results on Real-
World Images

As shown in Fig. 5, given similar joint estimation re-
sults, our model captures more image features that indicate
the shape of the human body and thereby gives much bet-
ter results in terms of human shape. We can distinguish
between fat (Column 1-5) and slim (Column 6-8) persons,
and between male and female. On the other hand, the out-
put shapes from HMR are almost the same, which is around
the mean shape value. By incorporating the shape-aware
synthetic dataset, our method largely improves the recov-
ery when the input human body does not have an average
shape. We also tested with real-world multi-view images
vs. single-view HMR. We feed the front view of the sub-
ject to HMR but input all views into our model. As shown
in Fig. 6, the front view does not provide complete infor-
mation of the subject pose, resulting in large pose errors on
the limbs. By sharing information from more views (most
importantly side views in this case), our model can effec-
tively reduce the ambiguity from the camera projection and
thereby provide good pose estimations across all views.

Appendix C. Comparison on Human3.6M
with Single-View Methods

Table 8 shows the comparison with single-view results.
As mentioned in the main text, the reason we don’t have
much better accuracy before rigid alignment is that:

• Our method does not assume known camera, resulting
in an unknown scaling difference to the real-world co-

Figure 5: Results on images with varying pose and shape. The top row is the input image. The middle row shows our recovery results, and
the bottom row shows the results from HMR [19]. Ours achieves better shape recovery results.



ordinates. After the Procrustes alignment, we achieved
similar (and better with multi-view) performance.

• Our solution is constrained in a subspace. Other meth-
ods output joint positions directly so they have more
DOF and can be more accurate. However, our output
is more comprehensive, as it contains the entire human
mesh in addition to joints and the result can be articu-
lated and animated directly.

Compared to Kolotouros et al. [20], our model is trained
on a much more diverse dataset (e.g. MS-COCO), which
means that the accuracy may not be minimized on the spe-
cific subset (Human 3.6M).

Appendix D. Results Without Training on Syn-
thetic Data

We further tested another variant of our model, which
is trained without synthetic data (Fig. 7). It achieves bet-
ter joint estimation, but the recovered human body does not
seem to be visually correct, especially at the end-effectors.
This is because the joint-only supervision does not im-
pose any constraints on the orientations of the end-effectors,
resulting in an arbitrary guess. The HMR model [19]
avoids this by adding a discriminator, which however could
have negative impact on shape estimations, as discussed in
Sec. 4.4. Our synthetic dataset provides a supervision to
not only the joint positions but also the rotations, hence the

Method MPJPE PA-MPJPE
Tome et al. [43] 88.39 -
Rogez et al. [38] 87.7 71.6
Mehta et al. [26] 80.5 -

Pavlakos et al. [31] 71.9 51.23
Mehta et al. [25] 68.6 -
Sun et al. [40] 59.1 -

Zhou et al. [55] 107.26 -
Debra et al. [9] 55.5 -

*Kolotouros et al. [20] 74.7 51.9
*Omran et al. [30] - 59.9

*Pavlakos et al. [33] - 75.9
*HMR [19] 87.97 58.1

*Ours (single-view) 88.34 58.55
*Ours (multi-view) 79.85 45.13

Table 8: Results on Human3.6M. Our method results in smaller
reconstruction errors compared to HMR [19]. * indicates methods
that output both 3D joints and shapes.

model will learn a prior at the end-effectors, demonstrating
more natural results.

Appendix E. Detailed Errors on Real World
Evaluation

The error percentages of each measure are shown in Ta-
ble 9. Since the length of the arm and leg can be seen

Figure 6: Results on real-world multi-view images. The top row is the input image. The middle row shows our recovery results, and the
bottom row shows the results from HMR [19]. HMR is only given the front view as input. Ours achieves better pose recovery results due
to more view angles.



error % Regular Dimmed Partly Occluded
input Standing Sitting Standing Sitting Standing Sitting

# of views Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi
neck 1.12 12.19 0.048 3.53 0.58 11.31 0.39 2.55 0.45 11.28 22.11 6.11
arm 4.76 4.22 8.03 7.33 6.21 4.95 8.10 6.89 5.20 3.82 7.20 6.70
leg 6.65 4.66 2.94 3.46 5.18 3.92 2.83 3.64 2.53 3.54 4.94 4.24

chest 4.59 7.72 8.40 3.1 6.20 7.20 8.13 3.19 19.80 1.57 30.04 13.72
waist 2.42 12.80 5.46 0.70 3.73 11.98 5.01 0.0084 13.78 8.52 30.05 10.61
hip 8.88 0.62 11.88 5.83 11.36 0.12 11.78 5.50 15.08 1.65 15.95 7.54

error % Regular Dimmed Partly Occluded
input Standing Sitting Standing Sitting Standing Sitting

method HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet
neck 10.4 2.9 4.8 26.3 8.4 1.6 4.6 26.2 9.2 3.9 5.7 6.8
arm 6.1 21.3 9.8 25.6 8.6 22.8 9.7 23.6 8.1 19.5 9.7 9.6
leg 7.9 6.3 1.8 4.4 4.3 6.6 1.8 3.3 5.1 6.2 2.1 3.0

chest 11.2 26.3 11.7 51.9 11.7 24.9 11.6 41.3 11.9 24.9 11.6 21.3
waist 9.4 9.0 8.7 42.7 9.4 7.7 8.5 33.7 9.7 8.3 8.4 11.4
hip 1.25 19.2 7.8 79.8 3.5 18.8 7.7 80 2.9 17 5.5 36.9

Table 9: Percentages of errors in common measurements of the human body under various lighting conditions using single-view vs. multi-
view images. The multi-view model performs significantly better in estimating measurements of chest, waist, and hip, and is more robust,
given variations in lighting and partial occlusion.

Figure 7: Our model trained without synthetic data.

clearly in the front view, both inputs provide a reasonably
good estimation. However, given more views, our model
can significantly reduce the error on other measurements,
especially on those of chest, waist, and hip. We found that
image illuminance has a negligible effect on the recovery
result, which is due to the translation invariance of the con-
volutional layers. Occlusion has a notable impact on the re-
covery using only a single-view image, given only one view
of the human body. However, by incorporating more views
using our network model, the estimation can be consider-
ably improved, indicating that the model using multi-view
images is more robust to occlusion than with a single-view
image as input.

Appendix F. Evaluation on 3D People in the
Wild.

We have conducted the evaluation on 3D People in the
Wild dataset. As shown in Table 10, although the dataset
consists of single view images of only a few subjects with
nearly standard shapes, our model achieved better accuracy

Method Mean Joint Err. Mean Vertex Err. (GT Pose)
HMR 93.77 21.71

Alldieck et al. [1] 169.61 47.07
Ours 96.86 20.96

Table 10: Evaluation on an unseen single-view dataset: 3D People
in the Wild. Values are mean joint error for pose and mean vertex
error with ground-truth pose. We have smaller error than Alldieck
et al.

over HMR, while Alldieck et al. did not generalize well.
The metric we used is mean joint error for pose, and mean
vertex error with ground-truth pose for shape.

Appendix G. Running Time
The previous work [19] trained 55 epochs for 5 days,

while ours trained 20 epochs for 1 day. We list the training
time here for reference, but it is actually not comparable
since the batch size, epoch size and GPU type are not the
same. In our environment, the inference time of HMR [19]
is 2 microseconds while ours takes 7.5 (per view). This is
because our network has a deeper structure to account for
multiple views.


