
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2018
T. Beeler and N. Thuerey
(Guest Editors)

Volume 37 (2018), Number 8

Time-Domain Parallelization for Accelerating Cloth Simulation

Junbang Liang1 and Ming C. Lin1,2

1University of North Carolina at Chapel Hill
2University of Maryland at College Park

Figure 1: Simulated ‘Karate’ animation using our method. Our method parallelizes the simulation workload in time domain using a two-
level mesh representation. In the figure, the time domain partition point sk is between frame t-1 and t, which will be simulated by two
different processors. We use an iterative detail recovery algorithm to refine the state of the cloth from low-resolution mesh before the parallel
high-resolution simulation begins. As a result, very little visual artifacts can be observed from (b) to (c). In the shown benchmark above, our
parallelization method has achieved up to 99x speedup on 128-core systems – an unprecedented level of scalability in distributed CPU systems
– compared to at most 47x on a 128-core system [NKT15]. The performance gain is also better than the GPU parallelization [TWT∗16] on
similar benchmarks, while our approach offers the additional flexibility for coupling with adaptively remeshed cloth simulators.

Abstract
Cloth simulations, widely used in computer animation and apparel design, can be computationally expensive for real-time
applications. Some parallelization techniques have been proposed for visual simulation of cloth using CPU or GPU clusters
and often rely on parallelization using spatial domain decomposition techniques that have a large communication overhead.
In this paper, we propose a novel time-domain parallelization technique that makes use of the two-level mesh representation
to resolve the time-dependency issue and develop a practical algorithm to smooth the state transition from the corresponding
coarse to fine meshes. A load estimation and a load balancing technique used in online partitioning are also proposed to
maximize the performance acceleration. Our method achieves a nearly linear performance scaling on manycore clusters and
outperforms spatial-domain parallelization on a diverse set of benchmarks.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

Significant progress has been achieved in visual simulation of cloth
over the past decades [GHF∗07, ZY01, BFA02, BW98]. Numer-

ous algorithms have been proposed that achieve high accuracy
and robustness for various 3D graphics applications, though real-
time simulation remains illusive for complex simulation scenarios.
Given recent advances in manycore and cloud computing, paral-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

lel computing has emerged as a possible alternative to achieve the
desired runtime performance. In this paper, we propose a novel
method for parallelizing cloth simulation. Unlike previous meth-
ods, our method divides the workload in time domain that mini-
mizes the communication overhead, thereby achieving much better
scalability and higher performance gain over previous methods.

The key challenge in time-domain parallelization is to obtain
or approximate the simulation states before the time-consuming
simulation begins. We use a two-level mesh representation to ad-
dress this time-dependency issue. Observing that a coarse-level
mesh can be simulated at a much higher speed, our method runs
a lower-resolution simulation using coarser meshes to approximate
the state at each time step. After an appropriate remeshing pro-
cess, the higher-resolution simulations using finer meshes can be
run in parallel. To further refine the simulation results, we propose
a practical technique to smooth the state transition from the low-
resolution to high-resolution simulations. To recover the lost states,
we make use of the coarse-level mesh and run several ‘static’ sim-
ulation steps before the high-resolution simulation starts. Experi-
ments in Sec. 6 show that this technique can reduce the visual
artifacts between temporal partitions. In order to balance the work-
load of each processor, we further develop an adaptive partitioning
algorithm, which takes into account the varying time consumption
of each frame caused by different contact configurations. We make
use of the time measurements of previous frames in both mesh res-
olutions and determine the partition point based on the current es-
timation of the total running time.

To sum up, the key contributions of this work include:

• A time-domain parallelization algorithm supporting adaptive
meshes with minimal communication overhead (Sec. 3);
• Load estimation and load balancing techniques that maximize

the overall performance acceleration (Sec. 4);
• A practical state transitioning algorithm between low- and high-

resolution simulations to recover details and ensure the visual
quality of the simulated sequences (Sec. 5).

On a given set of benchmarks, our method achieves an unprece-
dented level of scalability in distributed CPU systems when com-
pared to [ZFV04,NKT15]. Its performance gain is also higher than
the GPU parallelization [TWT∗16], while our approach offers the
additional flexibility for coupling with adaptively remeshed cloth
simulators. We also verify that given sufficient amount of proces-
sors, our method can achieve an average performance as fast as
the low-resolution simulation, while obtaining simulation results
similar to ones using high-resolution meshes. This method can
be widely adopted in applications, where runtime performance is
much more critical than accuracy, such as rapid design prototyp-
ing.

2. Related Work

In this section, we survey recent works on cloth simulation, paral-
lelization techniques, and other related acceleration techniques for
physics-based simulation.

2.1. Cloth Simulation

Simulation of cloth and deformable bodies has been extensively
studied for a wide range of applications in different areas, from

computer graphics, CAD/CAM, robotics and automation, to textile
engineering. Due to their ability to take large time steps, implicit
or semi-implicit methods [GHF∗07, VMTF09, Zel05, BWK03]
have been widely adopted after the seminal work by Baraff and
Witkin [BW98]. However, most of these works focus on the se-
rial simulation improvement and their runtime performances can
be slow. We use one of the state-of-the-art simulation algorithms,
ARCSim [NSO12], as the cloth simulator in our prototype imple-
mentation, but our parallelization technique does not rely on any
specific simulation algorithm.

2.2. Time Parallel Time Integration Method

The scientific computing community have thoroughly stud-
ied parallelization techniques solving partial differential equa-
tions [EM12, SRK∗12, RSE∗13]. We refer readers to this survey
paper by Gander et al. [GG] for more details. Cloth simulation is
similar to the general time-evolution equations. However, there is a
gap for these works to be directly applicable. Cloth simulation has
coupled other non-PDE factors, such as the collision response due
to continuous contacts with the human body. The standard collision
response within Physically-based Modeling literature is usually an
“empirical” impulse applied mainly on the boundary cases, where
the cloth is about to collide with the body or within a pre-defined
’threshold’ neighborhood. Traditional solutions [EM12] use an ar-
bitrary initial guess (e.g.Xt = X0) for each of the time step and
try to update the overall solution using a fixed point iteration. The
discontinuity introduced by collision not only prevents the method
from solving the fixed point problem in Newton’s method (calcu-
lating derivatives of the conditional term determined by variables
to be solved), but also prevents most of the collision response al-
gorithm from obtaining stable and correct results (a severe inter-
penetration of Xt = X0 at time t that can hardly be handled). This
special characteristic of cloth simulation makes it challenging to
apply methods solving pure integrations (where the solution space
is often regular) such as PFASST [EM12], due to collision-induced
discontinuities.

2.3. Parallel Cloth Simulation

Parallelization is a popular, practical way to achieve performance
improvement. Several parallelization techniques for cloth simula-
tion have been proposed. [WY16, FTP16] proposed GPU-based
simulation methods for elastic bodies. [MRB∗99, RRZ00, KB04,
TB06, ZFV02] proposed different types of spatial parallelization
but they all suffer from severe sub-linear scalability due to large
communication overhead. [NKT15] improved the work from
[AVGT12] using Asynchronous Contact Mechanics and reduced
the communication by proposing a locality-aware task assignment,
which first scaled more than 16 cores. [TWT∗16] implemented
a GPU-based simulation pipeline. Their method has achieved an
impressive speedup of 58 times, which is comparable to the perfor-
mance of our method on a 64-core cluster.

The main difference between other parallelization methods and
ours is that we decompose the simulation task in time domain.
Partitioning in time domain significantly reduces the communi-
cation cost in distributed systems, thereby offering a considerable
speedup. To the best of our knowledge, our method is the first time-
domain parallelization algorithm for cloth simulation that can be
coupled with adaptive remeshing schemes.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Figure 2: An overview of our method. We first simulate the cloth mesh in low resolution, obtaining the approximated states XC
k . After we

select the starting point in time for each processor sk (Sec. 4), we use the upsampling function to generate the initial states X̃F
sk and recover

the detail information iteratively (Sec. 5). Lastly, we simulate the entire sequence in parallel, given the starting states XF
sk .

2.4. Hierarchical Structures and Multi-level Methods

Multi-level algorithms have offered significant performance
improvement on various simulation problems. Tamstorf et
al. [TJM15] proposed a multi-grid method to speed up the cloth
simulation. Bergou et al. [BMWG07] developed a tracking solver
for rapid interaction in animation. They set up a two-level mesh
representation and used the desired coarse level animation to guide
the fine level one by applying constrained dynamics. Our method
builds on top of their work to ensure the low-res consistency of
the results. Recent works [MC10, WHRO10, RPC∗10] generate
high-resolution wrinkles from low-resolution cloth. Our method is
a physically-aware approach; it’s more diverse and realistic com-
pared to those work. Ours is more of an intermediate trade-off be-
tween time-consuming simulation and physically-unaware wrinkle
synthesis. We use a hierarchical mesh representation to approxi-
mate the states of the cloth mesh at each time step, before tran-
sitioning to computationally expensive high-resolution simulations
on fine meshes.

2.5. Mesh Upsampling

Mesh upsampling algorithms are widely explored from geomet-
rical approaches [SZD∗98, DKT98, Loo87] to data-driven meth-
ods [KGBS11,FYK10]. Our method needs a specific mesh upsam-
pling function to transfer the (approximated) state of the simulated
cloth from low-resolution to high-resolution. While classic sub-
division methods [Loo87] cannot generate high-resolution details,
data-driven ones [KGBS11,FYK10] depend largely on the specific
configuration in the training data, and as a result, can generate inter-
penetrations when applying to arbitrary scenarios. For generality,
we do not assume any specific upsampling function. Instead, we in-
troduce an iterative detail-recovering approach described in Sec. 5
in order to account for the lost details in the low-resolution mesh. In
our experiment, we use an adaptive remeshing method in [NSO12]
for its flexibility of use and a straightforward, linearly-interpolated
subdivision for fast error computation.

3. Overview

In this section we give an overview of our approach. We define the
problem formally before we introduce the basic idea of the method.

Problem Statement: Given the initial state of a cloth mesh, X0 (in-
clusive of both position and velocity), generate a sequence of cloth
states V = {X1, . . . ,XN} that characterize the cloth interaction with
the given environment, using a time step ∆t and a simulation func-
tion Xk+1 = f (Xk,∆t).

Fig. 2 shows the overall pipeline of our algorithm. The key idea
of this method is to partition the time domain of the cloth simula-
tion rather than the spatial domain of the simulated cloth. In order
to obtain the (approximated) mesh state without full simulations,
we propose a two-level hierarchy representation. We simulate the
cloth mesh XC at a coarser level with much lower computation and
determine the partition point S (in time) according to the algorithm
described in Sec. 4 before we simulate the entire high-resolution
sequence XF at the finer level in parallel.

The fine-level mesh at the starting point of each temporal parti-
tion is obtained by the corresponding coarse-level mesh using an
upsampling/remeshing function u(XC). However, the finer mesh
may be quite different from the coarse one after remeshing because
high frequency information XD is not stored in the coarse-level
mesh. Therefore, we design a practical state-transitioning technique
to recover the lost details to the extent possible, before the high-
resolution simulation begins. This state-transitioning method will
be discussed in Sec. 5. We list the notations used in this paper in
Table 1.

3.1. Two-Level Mesh Hierarchy Representation

Ideally we want to divide the whole simulation process into several
temporal partitions so that we can simulate each partition in parallel
and independently. However, since the mesh state at step k, Xk, is
determined by the state at previous step Xk−1, we do not know
the exact intermediate states until we finish the simulation from
step 0 to step k. Here we use the hierarchical mesh representation
to address this time-dependency problem. We maintain two sets
of simulated meshes, XC and XF , which represent the low- and
high-res(olution) simulation states using the coarse- and fine-level
meshes, respectively. We can recover the high-res state from the
low-res one by a user-defined upsampling function: X̃F = u(XC).

Note that the obtained high-res state from the fine mesh, X̃F , is
only an approximation of the exact state XF . But, for simplicity,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation
Table 1: Notations and definition of our method.

NOTATION DEFINITION
Xk state of the cloth at step k
V output sequence of states
N simulation sequence length
∆t specified time step
f (Xk,∆t) one-step simulation
f i(Xk,∆t) i-step simulation
XC coarse level state
XF exact fine level state
XD state difference between the two level states
X̃F approximated fine level state
u(XC) upsampling function
p number of processors
S ordered set of starting points for parallelization
s j starting point of the jth processor
K coarse-to-fine ratio

we assume that XF = X̃F in this section. Further state refinement
is discussed in Sec. 5.

Due to the fact that the simulation using a coarse mesh is signif-
icantly faster than the one using a fine mesh, we can obtain low-res
states {XC

1 , . . . ,X
C
N} in a relatively small amount of time. We fur-

ther choose p starting points S= {s0 = 0,s1, . . . ,sp−1} in time for p
processors, according to our partitioning algorithm to be discussed
in Sec. 4.1, and run the high-res simulation using the fine mesh in
parallel:

XF
k =

{
X̃F

k k ∈ S
f k−s j (XF

s j ,∆t) s j < k < s j+1
(1)

where

f i(Xk,∆t) =

{
f (f i−1(Xk,∆t),∆t) i > 1
f (Xk,∆t) i = 1

(2)

for running i steps of simulation.

4. Time Domain Parallelization

In this section we will describe our parallelization technique. We
solve the partitioning problem from the simplest case to the most
complex one, in order to balance the workload of each processor.

4.1. Static Temporal Partitioning

A straightforward approach for the partition problem is to divide
the time domain into p temporal segments of the same length:

s j = b
N
p

jc (3)

Assuming that every simulation step using the fine mesh takes
the same amount of time, the overhead of this partition schedule
is the time spent in simulation using the coarse mesh. To further
simplify the case, we take another assumption that the simulation
speed at the low-res level is K times as fast as high-res level. We
can estimate the speedup as:

η1 =
KN

K N
p +(p−1)N

p
=

K p
K + p−1

(4)

Note that in the low-res simulation using a coarse mesh there is
no need to continue the simulation after we reach sp−1. Therefore,
the time spent on low-res simulation is (p−1)N

p .

One improvement of the straightforward approach is that we can
start the high-res simulation in parallel, as long as the correspond-
ing starting point is ready. Intuitively, we want all processors of the
system to finish their jobs at the same time to achieve a good work-
load balance and the best speedup possible. This objective can be
attained by adjusting the starting points so that the processor which
starts earlier takes a longer part to simulate. Taking the same as-
sumption, we arrive at a load-balancing equation:

s j +K(s j+1− s j) = s j+1 +K(s j+2− s j+1)

Recall that K is the ratio between the high- to low-res simulation
time, s j,s j+1, and s j+2 are the starting point for simulation on the
processors j, j+1, and j+2, respectively. This equation yields:

s j = b
1−q j

1−qp Nc (5)

where q = 1− 1
K . The speedup can then be expressed as:

η2 =
KN

K(s1− s0)
= K−K(1−1/K)p ≈ p−

(
p
2

)
1
K

(6)

This is a tighter bound than Eqn. 4, as p approaches to K. The
key reason behind the sub-linear speedup is that the overhead ratio
to the original computation is 1/K. In practice, the ratio between
high- to low-res simulation time can be controlled by the user and
can usually reach 100∼200 using the method described in Sec. 4.3,
which is sufficient for running on a large distributed system.

4.2. Adaptive Partitioning

In the discussion above, we consider K as a known constant
throughout the entire simulation process. However, it is highly un-
likely that this would be the case. First of all, remeshing in the
simulation run leads to a varying number of vertices and thus a dy-
namically changing size of the linear system. Secondly, the compu-
tational cost can vary considerably, even with the same mesh size,
due to collision queries. Recent studies [TWT∗16] show that colli-
sion detection and response can take up to 80% of the total running
time. Moreover, the difference of per-step runtime is also domi-
nated by the collision response and the size of the adaptive mesh,
which are largely related to the object granularity. It has much more
impact in the high-resolution than the low-resolution, which K ac-
counts for as well. Therefore, the ratio of high- to low-res simula-
tion time varies and the exact number is usually unknown.

A fixed partitioning scheme can become unstable and sensitive
to these variations, resulting in load imbalance. One common so-
lution is to cut down the jobs into more smaller tasks so that the
imbalance can be reduced by dynamic job scheduling scheme. This
method surely works, but it will have large extra overhead due to
job scheduling and required preprocessing time (Sec. 5), and ex-
tra hand-tuned granularity parameter to optimize the performance.
Since we want to avoid any unnecessary computational overhead,
we here propose an adaptive partitioning algorithm.

Suppose that we have simulated up to step n using the coarse

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Figure 3: Adaptive partitioning Algorithm. We estimate the ratio of
high-to-low-res simulation time, K̃, according to the runtime data
we observe so far ([0,m] in High-res on Processor 1 and [0,n] in
Low-res on Processor 0). The objective is to predict the future run-
ning time (marked by ‘Processor 0’ and ‘Processor 1’ respectively)
to be as close as possible to the actual time.

mesh, when the first high-res parallel simulation with the same
starting time has completed m steps, where m < n. Let TC(m) and
TF (m) denote the running time of the previous m steps using the
coarse and fine meshes, respectively. Then, the ratio of the high-to-
low-res simulation time, K̃, can be approximated as:

K̃ =
TF (m)

TC(m)
=

TC(n)
TC(m)

(7)

Since these numbers may vary, it is not appropriate to determine
the global partition points using current approximations. Instead,
we use them to determine if we should perform a cut on step n,
i.e. whether n should be s1 or not. Fig. 3 gives a visualization of
the process. The objective of the partitioning algorithm is that the
total running time on the processor 0, which performs the low-res
simulation and the last part of the high-res simulation, is equal to
the running time of the current parallel simulation that performs
the high-res simulation using a fine mesh from step 0 to step n.
This relation can be formulated as:

TC(s̃p−1)+(TF (N)−TF (s̃p−1)) = TF (n) (8)

where s̃p−1 is the estimated starting point of the last partitioned
segment. We use the method described in Sec. 4.1 to obtain this
parameter. We further approximate Eqn. 8 to:

n =
N
K̃

+
K̃−1

K̃
(N− s̃p−1) (9)

by assuming stable parameters in the remaining simulation:

TF (j) = K̃TC(j) = K̃TC(1) j for any j (10)

Since n is increasing while K̃ and s̃p−1 can be considered sta-
ble compared to n, Eqn. 9 can be defined at some point in 1 ≤
n ≤ N − p. The remaining cut can be completed recursively. Al-
gorithm 1 shows the pseudocode of this method. K̃ and s̃p−1 here
are approximated values used only for this cut. They can vary dur-
ing the simulation, which will guide our partition algorithm to have
adaptive cuts, instead of fixed ones in Sec. 4.1.

In practice, the overall performance using adaptive partitioning is
similar to that using static partitioning when the user can manually
select the best K value for the simulation scenario. This algorithm
generally offers the advantage of dynamically estimating the ratio
of the high-to-low-res simulation time, so the user does not need to
hand-tune this parameter for the best possible speedup.

4.3. Analysis on Performance Scalability

As discussed in the previous sections, the scalability of this time-
domain partitioning method for parallel cloth simulation depends

Algorithm 1 - Adaptive Partitioning

Require: N, p, XC
0

1: n← 0
2: start fine level simulation from step 0 on Processor 1
3: while true do
4: n← n+1
5: obtain XC

n from XC
n−1

6: m← steps finished by Processor 1
7: calculate K̃, s̃p−1 from Eqn. 5 and 7
8: if condition of Eqn. 9 is met then break
9: t1← n

10: Control Processor 1 to stop at Step n
11: Recursively partition remaining N-n steps with p-1 processors

Figure 4: An example of the coarse mesh XC, intermediate mesh,
X̃F , and the fine mesh, XF , after iterative corrections.

largely on the general runtime ratio between the high- to low-res
simulation time, K. Since we perform a low-res simulation using
a coarse mesh and a parallel one using a fine mesh, the low-res
running time is a computational overhead for all processors and
thus the speedup before any improvement is K

1+K/p = K p
K+p . The

ideal case of perfect workload balance, η2, is discussed in Sec. 4.1,
hence the actual performance of Algorithm 1 in a specific scenario,
η3, has the following theoretical bound:

K p
K + p

< η1 ≤ η3 ≤ η2 < K (11)

Therefore, the higher the K value is, the higher the overall perfor-
mance gain of our method would be. One common way to increase
K is to control the number of total mesh triangles by limiting the
smallest possible size of each triangle in the low-resolution level.
The other way is to enlarge the time step of the low-res simulation,
since it is the common overhead of all processors and should aim
for faster speed rather than smaller discretization errors. A prop-
erly chosen large time step can improve the overall performance
with minimal impact on the simulation results. With the coarsening
techniques in space and time domains, K can be sufficiently large
to obtain good scalability in large distributed systems.

5. Smooth State Transitioning

As mentioned in Sec. 4, the high-res simulation state approximation
X̃F = u(XC) is not the same as the exact state XF using the fine
mesh, the reason of which is that the high frequency information
needed to reconstruct the states of the fine mesh is missing in the
estimated states of the simulation using the coarse mesh. Therefore,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

if we take X̃F directly as the starting state of the parallelized sim-
ulation, error e = E(X̃F ,XF) will occur, since the high-frequency
information is lost. Although e will vanish as the detail of the mesh
is recovered by the simulation, another error will appear at the be-
ginning of the subsequent partition after the end of the current one.
(Here we focus on the actual visual effect instead of the L2 distance
of each vertex. The error of our specific goal can be defined as the
smoothness of the cloth.) Thus, this error will appear as a ‘popping
visual artifact’ in the final concatenated sequence of the cloth sim-
ulation. Fig. 4 shows an example of the inaccurate starting mesh
(middle) obtained from the corresponding coarse level mesh (left),
which causes a popping visual artifact because the error compared
to the actual state (right) is large enough to be visible.

One straight-forward method is to apply global smoothing op-
timization as a post-processing step. However, this space-time op-
timization is too time consuming to be used in speed demanding
applications. As mentioned before, Bergou et al. [BMWG07] used
constrained dynamics for fine level simulation to match with the
coarse level motion. We employ this method to prevent the high-
res simulation from diverging too far from the low-res one. How-
ever, the high-frequency detail information would be still missing
at the transition point. Inspired from the observation that the visual
error will be eliminated during the simulation, we propose an it-
erative refinement technique that can recover as much as possible
the high-frequency detail of the cloth from the low-res simulation
using the coarse mesh.

5.1. Iterative Detail Recovery

Consider the mesh state at the consecutive step points XC
k−1 and

XC
k . The fine-level mesh can be regarded as the sum of the low-

frequency coarse mesh and the high-frequency detail:

XF = u(XC)+XD (12)

Assuming that the time step is sufficiently small and the detail
does not change much between two simulation steps, we have:

XF
k−1−u(XC

k−1)≈ XF
k −u(XC

k) = XD
k (13)

The idea here is to approximate XF
k−1 using XC

k−1, XC
k and X̃F

k .
From Eqn. 13 we have:

X̃F
k = f (X̃F

k−1,∆t) (14)

≈ f (X̃F
k −u(XC

k)+u(XC
k−1),∆t) (15)

Note that Eqn. 15 can be considered as an updated version of
Eqn. 14. By subtracting the upsampled change of the state as a
backward step and the simulation itself as a forward one, we can
compute X̃F

k iteratively. Algorithm 2 below shows the iterative de-
tail recovery process. We run this algorithm at each of the transition
point as a pre-processing step before the high-res simulation begins.

5.2. Convergence and Continuity

Taking the advantage of the constraint-based tracking solver intro-
duced by Bergou et al. [BMWG07], this iterative algorithm can be
proved to have convergence guarantee. We show the proof in Ap-
pendix A. It is not guaranteed that the convergence point is exactly

Algorithm 2 - Iterative Detail Recovery

Require: XC
k−1, XC

k (k ∈ S)
1: X̃F

k ← u(XC
k)

2: while not reaching maximum iteration do
3: X̃F

k−1← X̃F
k −u(XC

k)+u(XC
k−1)

4: X̃F
k ← f (X̃F

k−1,∆t) with constraints introduced by
TRACKS [BMWG07]

5: XF
k ← X̃F

k

the same as the high-res simulation result. However, due to the en-
forcement of the tracking constraint, the difference compared to the
result at the previous step will be O(∆t), which means that there
will be very little discontinuity and in most practical cases they are
invisible. We show several results in the supplementary video.

5.3. Iteration Number Estimation

The number of iterations needed for convergence, according to the
proof, is largely related to the strength of the coarse-level constraint
(in other words, the coarse-to-fine ratio K), since it provides the
damping force to the system. Additionally, given a fixed upsam-
pling scale (K), the iteration number is also related to a) the stiff-
ness and density of the cloth, and b) the time step ∆t. We use an
qualitative estimation in Appendix B and directly gives out our ap-
proximation result here as c0

√
ms/ξ/∆t, where ms is the density

and ξ is the Frobenius norm of the stretching and bending stiffness
matrix in [WOR11]. We use c0 = 10 across all of our experiments.
In practice, the iteration can also end when no large difference is
detected between current and previous results. We found that using
our estimation number the difference threshold can be as small as
10−3 relative to the scale of the cloth.

In each of the temporal partition, we add an extra simulation
steps of c0

√
ms/ξ/∆t to refine the starting state, so the total ideal

performance gain due to parallelization is

η =
N

c0
√

ms/ξ/∆t +N/η2
(16)

Given a cloth material configuration with fixed ms and ξ, η will
have an upper-bound of η2 if c0

√
ms/ξ/∆t� KN/η2. This can be

easily satisfied since the duration N∆t is usually from a few seconds
to many minutes, and c0

√
ms/ξ is usually smaller than 1.

5.4. Implementation Details

There are some minor details in the implementation of the ap-
proach. When we take a larger step in the low-resolution simu-
lation, we estimate the change of the state in the corresponding
high-res step u(XC

k)− u(XC
k−1) by linearly interpolating the states

in between. The same method is also used in the adaptive parti-
tioning method described in Sec. 4.2. The recovery iterations also
count into the estimation of the current K̃, but do not count into the
total number of steps, N, since there is no corresponding step in
the low-res level and each processor has the same number of extra
simulation steps, so the system still remains balanced. We regard K̃
as +∞ if the first step of the high-res simulation is not finished at
the time we determine n in Sec. 4.2. Note that the state X includes
both the position and velocity components. We also refine the ve-
locities in the upsampling phase. When using adaptive remeshing,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

we obtain the new velocity as the average of the two vertices during
edge splitting, following ArcSim [NSO12]. The change of the state
is also computed correspondingly.

5.5. State Inconsistency

In the extreme cases where the high-resolution mesh is much finer
than the low-res one, e.g. 1M versus 100, the shape of the cloth in
that case is largely determined by the aggregated effect from details
not captured by low-res simulation. Therefore, we cannot recover
the exact detail as in the serially simulated one at the transition
point, which is referred to as the ‘state inconsistency problem’. En-
forcing the high-res mesh to match the low-res one using the track-
ing solver [BMWG07] can effectively avoid this problem. So, it can
lead the simulation result to follow the movement of low-res one
instead, which limits this approach from accuracy-demanding us-
age in those extreme cases. However, for other usage such as rapid
design prototyping, where environmental constraints are mild and
K is reasonable, motion difference between two levels is small and
we can indeed achieve visually plausible results with high speedup,
which are shown in Fig. 10 and 11. Alternative methods to improve
the speedup without harming the accuracy is also discussed later in
Sec.6.5.

6. Results

Our method is tested on a large computing cluster with 526 com-
pute nodes, each with 12-core (dual socket), 2.93 GHz Intel pro-
cessors, 12M L3 cache (Model X5670), and 48 GB memory at 2:1
ratio IB interconnect, MPI for communication. We run one process
in each of the cores (compactly assigned). We use up to 128 cores
of this cluster to show the linear scalability provided by our theory
and up to 512 cores to show the maximum possible speedup in large
distributed systems. We could not test on a larger number of cores
due to a core limit of 512 per job locally. We use the upsampling
function by [NSO12] throughout all of our experiments except in
Table 4, which uses linearly-interpolated subdivision for fast error
computation. As stated in Sec. 5.5, this method cannot guarantee
the same accuracy as full simulation, which often cannot guarantee
the same accuracy as the physical systems. The objective of this
work is to generate visually plausible simulation to provide rapid
visual feedback for interactive applications, such as rapid design
prototyping.

6.1. Parameter and Scenario Setting

As mentioned in Sec. 4.3, we control the general coarse-to-fine ra-
tio by limiting the smallest mesh size and enlarging the time step
of the low-res simulation. Specifically in all of our test cases, the
smallest length size of the triangle in the low-res simulation is about
5 times as large as that in the high-res one. The number of itera-
tions in each of the smoothing processes is set to be the same as
that in Sec. 5.3. We use ARCSim [NSO12] as our base simula-
tor, since it naturally supports adaptive mesh refinement with an
efficient remeshing algorithm. Our method can be used in other
CPU-based simulators using uniform meshes as well, as long as
the upsampling algorithm is specified or implemented. All listed K
in the following tables are averaged values across the entire simula-
tion. We show scaling results using figures for clarity. Please refer
to Appendix C for detailed data.

Figure 5: Performance scaling result with large low-res time step.
A nearly linear scalability is achieved.

Table 2: Results on a higher-resolution mesh. We run our system on
meshes of higher resolution. Values in the table are the running time
in minutes, while the numbers in the bracket are the corresponding
speedup.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
20K-94K 12.8(74.1) 26.8(75.0) 7.15(102) 61.5(116) 52(96.4) 28.8(92.3) 452(93.8)

80K-376K 74(99.6) 193(109) 30.2(178) 609(119) 599(103) 192(101) 942(108)

We use 7 different benchmarks to test the performance and
the animation quality of our method: Blue Dress and Yellow
Dress (Fig. 11(a,b)), Sphere(Fig. 11(c)), Falling(Fig. 11(d)),
Karate(Fig. 1), Twisting(Fig. 10(a)) and Funnel(Fig. 10(b)). The
default setting is 20 second simulation at the low-resolution time
step of 0.02 sec using 128 cores. We extend the duration to 80 sec-
onds and decrease the time step to make comparisons and validate
our theoretical analysis on performance gain. Below are descrip-
tions of each benchmark data.

To the best of our knowledge, previous works did not provide
any code or experimental data to public, so the best known practice
is to use the reported ‘speedup data’ in other works with similar
scenarios, to minimize the difference due to computing platforms
or implementation. We use the timing data of ‘Two Cloths Draped’
scenario from [NKT15] since it has similar settings as ours (cloth-
object interaction), similarly with other benchmarks.

Figure 6: Results with Increasing Length of the Simulation. A
larger speedup is observed with longer duration of simulation.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Figure 7: Performance scaling result with small low-res time steps.
Compared to Fig. 5, the speedup for cases with core number larger
than 32 is decreased, due to the smaller time steps for low-res sim-
ulation.

Table 3: Comparison between different partition schemes. Values
in the table are simulation runtime in seconds.

Cores 8 16 32 64 128
Uniform partition runtime(s) 5533 3010 1042 684 631
Adaptive partition runtime(s) 4721 2568 928 565 532

Speedup (%) 117 117 112 121 119

6.2. Performance

Nearly linear scalability w.r.t. the number of cores. As indicated
in Fig. 5, our method achieves a good scalability with an increas-
ing number of processors. The reason of the super-linear speedup
in the ‘Sphere’ scene is that it contains rapidly changing contacts
with obstacles. When the cloth is free from contact after the sphere
passes through, the remeshing algorithm of ARCSim failed to sim-
plify the mesh effectively, spending an unnecessarily large amount
of time simulating simple flat cloth. However, due to the nature of
our two-level structure, we maintain a reasonably small number of
mesh elements while preserving the quality, and therefore outper-
form the serial approach significantly. We tested our method on a
higher-resolution mesh and observed an even better speedup (Ta-
ble 2) due to the same reason.

Improved scalability with increasing simulation duration. We
show in Fig 6 that the scalability of our parallelized cloth simula-
tion improves as the duration of the simulation increases. Although
the averaging effect of the remaining load imbalance may partially
account for it, the most likely reason is from Eqn. 16. We have
relatively small speedup in 128-core parallelization when simulat-
ing a 20-second simulation because the iterative detail recovery al-
gorithm consumes a relatively large amount of time according to
Eqn. 16. Since the overhead is not dependent on the duration of the
simulation and our method is a time-domain parallelization tech-
nique, the performance gain improves as the length of the simula-
tion increases due to a smaller portion of the overhead.

Performance impact on different choices of parameters. To ver-
ify our scalability analysis in Sec. 4.3 and 5.3, we further ran our
benchmark with much smaller time steps in low-res simulation. As
mentioned in Sec. 4.3, increasing low-resolution time step is one of
the ways to increase the ratio of high-to-low-res simulation time,
K. Fig. 7 shows that smaller time steps in low-res simulation leads

to a sub-linear scaling in all datasets, starting from the 64-core con-
figuration. Although the ‘Sphere’ dataset has a bigger K due to its
simplicity, the scalability starts to degrade at 128 cores as well.
The speedup still increases with the simulation duration (as shown
in Table 7 of Appendix C). However, as it is more closely bounded
by K, the gain factor is not as significant as that with large time
steps. In practice, a large time step in low-resolution simulations
is beneficial to the parallelization performance, but it is limited by
(a) the embedded simulation method, (b) the duration of a single
frame, and (c) the desired animation quality.

Performance impact on different partition schemes. Table 3
shows that by using our adaptive partitioning scheme, we achieve
an average of about 120% speedup compared to the uniform parti-
tioned one with the best chosen parameter. In cases such as rapid
design prototyping, where the cloth is in continuous contact with
obstacles, the parameter K remains relatively stable. However, it is
still difficult to compute K before simulation begins, since it de-
pends on the specific mesh and collision structure. Furthermore, it
is best not to compute the parameter using the first few frames,
since the cloth at the beginning can be under constrained with-
out sufficient contact with the obstacles. Our adaptive partitioning
method here serves as an on-the-fly parameter estimation algorithm
in order to achieve good workload balance.

Low-res speed with high-res mesh on a large distributed sys-
tem. We further test our method in extreme cases where K is rela-
tively small compared to p, which is possible in practice when the
computational resources are sufficient. The runtime result is shown
in Table 4. Although we cannot achieve a speedup as high as 512
due to the limitation of K, we have actually met the upper bound.
The serial low-resolution simulation has consumed most of the time
so there is very little space to improve in our scheme.

Comparison with previous CPU parallelization work. We com-
pare the performance of our method against other CPU paralleliza-
tion techniques. Fig. 8 shows that in smaller-scale systems (less
than 16 cores), our method can maintain a linear speedup with re-
spect to the single-core system, scaling better compared to previ-
ous CPU-based methods using spatial-domain partitioning, e.g. 11x
over 16 cores by [ZFV04]. For larger-scale systems (Fig. 9), we
achieved about 50% more efficiency than previous methods such
as [NKT15]. In these methods, the processors need to send the in-
formation to each other, typically several times, when solving the
linear system, resulting in large communication overhead and lim-
ited scalability. In contrast, our method only needs to share the
states from low-resolution simulations once. Therefore, our method
can achieve greater scalability and efficiency in comparison.

In addition, we compare our method with the original embedded
OpenMP version of ARCSim (Table 6 in Appendix C). Although
a maximum of 2.69x is observed using OpenMP with 2 cores due
to a better cache usage in the linear solver, the performance scaling
is poor when adding more cores, which results from that the simu-
lation algorithm does not parallelize the remeshing process due to
memory access issues. Our method disables the OpenMP feature in
the ARCSim. Since we parallelize the simulation in time domain,
we can avoid memory access control problems, thereby achieving
a better speedup.

Comparison with GPU-based parallelization. Using similar

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Table 4: Results in the extreme case. We use 512 cores to simulate these scenes. Values in the table are in seconds per frame. The error metric
is relative curvature difference compared to serial results in percentage. We use linear interpolated subdivision for fast error comparison.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Time step(low-res) 1/200s 1/100s 1/50s 1/125s
Time step(high-res) 1/200s 1/500s
of faces(low-res) 5K 6K 8K 6K 4K 4K 4K
of faces(high-res) 80K 95K 131K 94K 58K 65K 65K

of triangles(obstacle) 20K 20K 1280 15K 28K 762 4K
K 165 170 172 60 99 188 794

Low-res speed (serial 1-core) 0.6 0.79 1 1.2 0.83 0.22 0.32
High-res speed(OpenMP 12-core) 32.2 44.3 55.9 23.2 27.6 13.7 86.7

Our method 0.89 1.14 1.3 1.5 0.91 0.41 1.22
Error before detail recovery 11% 12% 3.2% 22% 29% 46% 16%
Error after detail recovery 4% 6% 0.6% 5% 9% 14% 7%

Figure 8: Small scale parallelization comparison. Our method (in
blue solid line) achieves a linear speedup, while others are limited
by the communication overhead due to spatial domain partitioning.

Figure 9: Large scale parallelization comparison. Our method
(in blue solid line) achieves about 50% higher efficiency than
[NKT15] using dynamic workload balancing.

Table 5: Comparison with GPU method [TWT∗16]. Other than
the scalable speedup gain with more cores, we are able to naturally
support adaptive mesh during the simulation.

Method Speedup over sequential ArcSim [NSO12] Supports Adaptive Mesh?
Tang et al. [TWT∗16] 47-58x No
Our method(64-core) 50-75x Yes
Our method(128-core) 75-115x Yes
Our method(512-core) 91-214x Yes

(a) Twisting (b) Funnel
Figure 10: More simulation results (best view with zoom-in in
PDF). We have achieved visually plausible and smooth results even
in challenging cases involving frequent contacts.

benchmarks as [TWT∗16], the speedup of our method in a 64-core
system configuration is up to 54x in practical scenarios compared to
the original ARCSim implementation on a single-core system and
achieves a performance gain comparable to the GPU paralleliza-
tion of [TWT∗16] (Table. 5). However, we have other distinctive
strengths compared to the GPU method. We are the first work that
can couple an adaptive mesh of varying dimensions during the sim-
ulation. We use the same number of triangles for performance com-
parison, but in practice we can produce similar visual granularity
with much fewer triangles using adaptive mesh [NSO12], thereby
making our method even faster. Moreover, our performance can
be further improved using more cores and a longer simulation se-
quence, as shown in Fig 5 and 6.
6.3. Smoothness

Fig. 11 and Table 4 shows the results before and after the refining
algorithm is applied. If directly using the results from the upsam-
pling algorithm, the detail of the cloth is significantly different from
the correct one and therefore introduces popping artifacts. After ap-
plying the iterative smoothing algorithm, the high frequency infor-
mation is recovered. We use average curvature distance defined in
Eqn. 17 to measure the error between the recovered mesh and the
original, high-res one simulated using ARCSim on a single core.

E =
∑ f1, f2∈F |curv(f1, f2)− curv(f̃1, f̃2)|

∑ f1, f2∈F |curv(f1, f2)|
(17)

where f1, f2 are two adjacent faces in the original mesh, and f̃1, f̃2
are two corresponding faces in our simulation result. We disable
remeshing and use linearly-interpolated subdivision for fast com-
parison. A larger value of the curvature error indicates a sharper
edge in the corresponding position and thus a potential artifact. Be-
fore our recovery method, a relative error up to 46% is observed,
which can cause large ‘popping’ artifacts in the result animation

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

(a) Blue Dress (b) Yellow Dress

(c) Sphere (d) Falling
Figure 11: Refining results (best view with zoom-in in PDF). The left image in each of the example is the upsampled mesh without detail
recovery, which lacks high frequency details and causes ‘popping’ artifacts. The right one is the corresponding mesh using our method.

(Fig. 11). By using our technique, the error has decreased by 2-
5 times, which is a significant improvement. In the supplemental
video, we show the improvements of the results in more detail, in
which our method can achieve reasonably high-fidelity visual qual-
ity for parallelized cloth simulation.

6.4. Memory and Render Latency

The extra memory footprint introduced by our method is small
compared to the high-res mesh. In our experiments, the low-res
mesh storage is 5.5% of the high-res one. We do not render the low-
res simulation in our method, and it actually starts at the same time
with the first partition of the high-res one. Therefore, our method
does not introduce any latency compared to the full-res simulation.
In fact, we have achieved a ‘pre-fetch’ effect for the subsequent
partitions due to the very fast, low-res simulation, thereby reducing
any potential latency introduced by non-real-time simulation.

6.5. Limitations

There are some limitations with this method. First of all, the perfor-
mance gain is bounded by the ratio of low- to high-resolution sim-
ulation time. Other than accelerating the simulation through paral-
lelization in the temporal domain, we can additionally employ GPU
implementation to further improve the overall gain. With a factor of
50x speedup from GPU [TWT∗16] and a sufficient number of pro-
cessors to parallelize the high-resolution simulation, it is possible
to accelerate the performance even further. Secondly, the runtime of
our method is bounded by a single-step high-resolution simulation

time. This implies that at least one simulation step must take place
in order to see the result. However, our method accelerates the over-
all performance, so we can actually achieve ‘pseudo-interactivity’,
where the user can have a very fast visual feedback in parallel. An-
other possible direction is to implement a hybrid domain decompo-
sition scheme, allocating some processors for spatial-domain paral-
lelization to accelerate the single-step runtime. Our approach pro-
vides plausible visual results in practical real-time applications, like
rapid design prototyping. However, as stated in Sec. 5.5, This ap-
proach may not be suitable in applications requiring high precision.
In practice, the resulting cloth can sometimes appear slightly stiffer
than the original one.

7. Conclusion and Future Work

In this paper, we introduce a novel temporal-domain parallelization
method for practical cloth simulation such as rapid design prototyp-
ing. Taking the advantage of faster simulations on coarser meshes,
we parallelize the cloth simulation in time with accelerated com-
putation and minimal communication overhead. We also proposed
an iterative detail recovery algorithm to minimize the visual arti-
facts due to the state transitioning from coarse to fine meshes. Our
method outperforms existing CPU- and GPU-based parallelization
techniques on a diverse set of benchmarks. It offers high efficiency
and nearly linear scalability on large distributed systems, while
maintaining high-fidelity visual simulation of the cloth. The scal-
ability of our method is dependent on the ratio of low- to high-
resolution simulation time, the length of the simulation, and per-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

sistence of contacts with obstacles. Since this method utilizes only
time-domain parallelization, a natural extension would be a hybrid
decomposition scheme that may provide a potential usage in short-
duration simulation or in circumstances with memory constraint.

Acknowledgement

This research is supported in part by NSF/CMMI Cybermanufac-
turing Program.

References
[AVGT12] AINSLEY S., VOUGA E., GRINSPUN E., TAMSTORF R.:

Speculative parallel asynchronous contact mechanics. ACM Trans.
Graph. 31, 6 (Nov. 2012), 151:1–151:8. URL: http://doi.acm.
org/10.1145/2366145.2366170, doi:10.1145/2366145.
2366170. 2

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust treatment of
collisions, contact and friction for cloth animation. ACM Transactions
on Graphics (ToG) 21, 3 (2002), 594–603. 1

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M., GRINSPUN
E.: TRACKS: Toward Directable Thin Shells. ACM Transactions on
Graphics (SIGGRAPH) 26, 3 (jul 2007), 50:1–50:10. 3, 6, 7, 12

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simulation. In
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques (1998), ACM, pp. 43–54. 1, 2, 12

[BWK03] BARAFF D., WITKIN A., KASS M.: Untangling cloth. In
ACM Transactions on Graphics (TOG) (2003), vol. 22, ACM, pp. 862–
870. 2

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision surfaces in
character animation. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques (1998), ACM, pp. 85–94.
3

[EM12] EMMETT M., MINION M. L.: Toward an Efficient Parallel in
Time Method for Partial Differential Equations. Communications in Ap-
plied Mathematics and Computational Science 7 (2012), 105–132. URL:
http://dx.doi.org/10.2140/camcos.2012.7.105. 2

[FTP16] FRATARCANGELI M., TIBALDO V., PELLACINI F.: Vivace:
A practical gauss-seidel method for stable soft body dynamics. ACM
Transactions on Graphics (TOG) 35, 6 (2016), 214. 2

[FYK10] FENG W.-W., YU Y., KIM B.-U.: A deformation transformer
for real-time cloth animation. In ACM Transactions on Graphics (TOG)
(2010), vol. 29, ACM, p. 108. 3

[GG] GANDER M. J., GANDER M. J.: 50 years of time parallel time
integration. 2

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R., BERCOVIER
M., GRINSPUN E.: Efficient simulation of inextensible cloth. ACM
Transactions on Graphics (TOG) 26, 3 (2007), 49. 1, 2

[KB04] KECKEISEN M., BLOCHINGER W.: Parallel implicit integration
for cloth animations on distributed memory architectures. In Proceed-
ings of the 5th Eurographics conference on Parallel Graphics and Visu-
alization (2004), Eurographics Association, pp. 119–126. 2

[KGBS11] KAVAN L., GERSZEWSKI D., BARGTEIL A. W., SLOAN P.-
P.: Physics-inspired upsampling for cloth simulation in games. In ACM
Transactions on Graphics (TOG) (2011), vol. 30, ACM, p. 93. 3

[Loo87] LOOP C.: Smooth subdivision surfaces based on triangles. 3

[MC10] MÜLLER M., CHENTANEZ N.: Wrinkle meshes. In Proceedings
of the 2010 ACM SIGGRAPH/Eurographics symposium on computer an-
imation (2010), Eurographics Association, pp. 85–92. 3

[MRB∗99] MAERTEN B., ROOSE D., BASERMANN A., FINGBERG J.,
LONSDALE G.: Drama: A library for parallel dynamic load balancing
of finite element applicationsâŃĘ. In European Conference on Parallel
Processing (1999), Springer, pp. 313–316. 2

[NKT15] NI X., KALE L. V., TAMSTORF R.: Scalable asynchronous
contact mechanics using charm++. In Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2015 IEEE International (2015), IEEE,
pp. 677–686. 1, 2, 7, 8, 9

[NSO12] NARAIN R., SAMII A., O’BRIEN J. F.: Adaptive anisotropic
remeshing for cloth simulation. ACM transactions on graphics (TOG)
31, 6 (2012), 152. 2, 3, 7, 9

[RPC∗10] ROHMER D., POPA T., CANI M.-P., HAHMANN S., SHEF-
FER A.: Animation wrinkling: augmenting coarse cloth simulations with
realistic-looking wrinkles. In ACM Transactions on Graphics (TOG)
(2010), vol. 29, ACM, p. 157. 3

[RRZ00] ROMERO S., ROMERO L. F., ZAPATA E. L.: Fast cloth sim-
ulation with parallel computers. In European Conference on Parallel
Processing (2000), Springer, pp. 491–499. 2

[RSE∗13] RUPRECHT D., SPECK R., EMMETT M., BOLTEN M.,
KRAUSE R.: Poster: Extreme-scale space-time parallelism. In
Proceedings of the 2013 Conference on High Performance Comput-
ing Networking, Storage and Analysis Companion (2013), SC ’13
Companion. URL: http://sc13.supercomputing.org/
sites/default/files/PostersArchive/tech_posters/
post148s2-file3.pdf. 2

[SRK∗12] SPECK R., RUPRECHT D., KRAUSE R., EMMETT M., MIN-
ION M. L., WINKEL M., GIBBON P.: A massively space-time parallel
N-body solver. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (Los Alami-
tos, CA, USA, 2012), SC ’12, IEEE Computer Society Press, pp. 92:1–
92:11. URL: http://dx.doi.org/10.1109/SC.2012.6. 2

[SZD∗98] SCHRÖDER P., ZORIN D., DEROSE T., FORSEY D.,
KOBBELT L., LOUNSBERY M., PETERS J.: Subdivision for modeling
and animation. ACM SIGGRAPH Course Notes 12, 2 (1998), 43. 3

[TB06] THOMASZEWSKI B., BLOCHINGER W.: Parallel simulation of
cloth on distributed memory architectures. In Proceedings of the 6th
Eurographics conference on Parallel Graphics and Visualization (2006),
Eurographics Association, pp. 35–42. 2

[TJM15] TAMSTORF R., JONES T., MCCORMICK S. F.: Smoothed ag-
gregation multigrid for cloth simulation. ACM Transactions on Graphics
(TOG) 34, 6 (2015), 245. 3

[TWT∗16] TANG M., WANG H., TANG L., TONG R., MANOCHA D.:
Cama: Contact-aware matrix assembly with unified collision handling
for gpu-based cloth simulation. In Computer Graphics Forum (2016),
vol. 35, Wiley Online Library, pp. 511–521. 1, 2, 4, 9, 10

[VMTF09] VOLINO P., MAGNENAT-THALMANN N., FAURE F.: A sim-
ple approach to nonlinear tensile stiffness for accurate cloth simulation.
ACM Transactions on Graphics 28, 4 (2009), Article–No. 2

[WHRO10] WANG H., HECHT F., RAMAMOORTHI R., O’BRIEN J. F.:
Example-based wrinkle synthesis for clothing animation. In Acm Trans-
actions on Graphics (TOG) (2010), vol. 29, ACM, p. 107. 3

[WOR11] WANG H., O’BRIEN J. F., RAMAMOORTHI R.: Data-driven
elastic models for cloth: modeling and measurement. In ACM Transac-
tions on Graphics (TOG) (2011), vol. 30, ACM, p. 71. 6, 13

[WY16] WANG H., YANG Y.: Descent methods for elastic body simu-
lation on the gpu. ACM Transactions on Graphics (TOG) 35, 6 (2016),
212. 2

[Zel05] ZELLER C.: Cloth simulation on the gpu. In ACM SIGGRAPH
2005 Sketches (2005), ACM, p. 39. 2

[ZFV02] ZARA F., FAURE F., VINCENT J.-M.: Physical cloth simula-
tion on a pc cluster. In 4h Eurographics Workshop on Parallel Graphics
and Visualization (2002). 2

[ZFV04] ZARA F., FAURE F., VINCENT J.-M.: Parallel simulation of
large dynamic system on a pc cluster: Application to cloth simulation.
International Journal of Computers and Applications 26, 3 (2004), 1–8.
2, 8

[ZY01] ZHANG D., YUEN M. M.: Cloth simulation using multilevel
meshes. Computers & Graphics 25, 3 (2001), 383–389. 1

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/2366145.2366170
http://doi.acm.org/10.1145/2366145.2366170
http://dx.doi.org/10.1145/2366145.2366170
http://dx.doi.org/10.1145/2366145.2366170
http://dx.doi.org/10.2140/camcos.2012.7.105
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
http://dx.doi.org/10.1109/SC.2012.6

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Appendix A: Proof of Convergence of Algorithm 2

Theorem 1 Algorithm 2 can reach the convergence point when
applying the coarse-level tracking constraints to the system, as long
as ∂F

∂X = 0 for external forces.

Proof We assume the whole system is running under the Forward
Euler method: (

∆x
∆v

)
= ∆t

(
∆v

M−1F(X)

)
(18)

where F is the force function, and X =
(
x v

)T is the state of the
cloth. Given the assumption that ∂F

∂X = 0 for external forces, they
have the same contributions for each iteration and are all canceled
out by the subtraction (∆u(XC

k)) in Algorithm 2. So we only con-
sider internal forces.
Since we only focus on one high-res simulation step here, we leave
off the resolution superscript and replace the step number subscript
by the iteration time. We denote the upsampled coarse-level differ-
ence by ∆X0 =

(
∆x0 ∆v0

)T . Using the new notation, we have:(
xi
vi

)
=

(
xi−1−∆x0
vi−1−∆v0

)
+∆t

(
vi−1−∆v0

M−1F

)
(19)

We now regard the evolution from
(
xi−1 vi−1

)T to
(
xi vi

)T as
one full simulation step (instead of a backward-forward iteration),
and only focus on the velocity equation (since the position can be
derived from it):

vi = vi−1 +∆t(M−1F−∆a0) (20)

where ∆a0 = ∆v0/∆t is the corresponding acceleration value.
Given that the internal forces are negative gradients of the potential
energy, we have:

d2x
dt2 = M−1F−M−1M∆a0 (21)

=−M−1 ∂E
∂x
−M−1 ∂M∆a0 ·x

∂x
(22)

=−M−1 ∂E
∂x
−M−1 ∂E0

∂x
(23)

=−M−1 ∂Ẽ
∂x

(24)

where we make up a form of potential energy (E0) with constant
gradients to unite the two components.
By computing the dot product with the velocity (of the previous
iteration), we have:

dx
dt
·M d2x

dt2 =−dx
dt

∣∣∣
(i−1)∆t

· ∂Ẽ
∂x

∣∣∣
xi−1−∆x0

(25)

=−dx
dt
· (∂Ẽ

∂x

∣∣∣
xi−1
− ∂

2Ẽ
∂x2 ∆x0) (26)

=−(∂Ẽ
∂t
− ∂

2Ẽ
∂x∂t

∆x0) (27)

=− ∂

∂t
(Ẽ− ∂Ẽ

∂x
∆x0) (28)

=−∂Ẽ
∂t

∣∣∣
xi−1−∆x0

(29)

or in a discrete form:

vi−1 ·Mai =−
∂Ẽ
∂t

∣∣∣
xi−1−∆x0

(30)

This equation means that the whole system tends to decrease the
sum of the potential energy: when Ẽ is decreasing, the accelera-
tion ai will have roughly the same direction with the velocity; oth-
erwise it will have the opposite one, makes the velocity direction
turn around eventually. The coarse-level tracking constraint here
serves as a damping component, which prevents the system from
oscillation due to conservation of energy. It also prevents Ẽ from
infinitely decreasing since the coarse shape of the mesh is strictly
preserved [BMWG07]. Therefore, after sufficient number of itera-
tions the whole system will reach a balance where ∂Ẽ

∂t = 0, and a
stable result gives vi = ai = 0.

Note that although we have constraints on external forces, in most
of the cases , they can be easily satisfied, such as gravitational
forces and user-control impulse forces. Here we consider collision
response as part of the constraint system, so it does not have
impacts on the practical correctness. We use Forward Euler only
for the simplicity of the expression in the proof. Actually we
can derive the same form of Eqn. 20 using any other integrator
(e.g. Backward Euler), during which the extra terms related to
∆v0 (introduced by Backward Euler [BW98]) can be canceled
out, eventually leaving ∆a0. The main idea of the proof is that
the system is conservative, regardless of the actual integrator,
before adding extra damping constraints that ensures the final
convergence. Upon convergence, the change in the high-res states
(i.e. velocities and accelerations) will be the same as the change
in the interpolated low-res states. This step, together with the
position constraints by TRACKS, ensures the position and velocity
difference between the high-res results at the boundary to be
O(∆t), smoothing out the visual popping artifact.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Appendix B: Iteration Number Estimation

We estimate our iteration number in a simplified 2-D spring-mass
system. Suppose at t = 0 a string with length l is hanging hori-
zontally, with both endpoints fixed. It is currently discretized as
one single piece of 1-D string so the middle part of itself will not
fall down. However, in the continuous real-world space, it is not
in the equilibrium state and it has a residual energy of O(l2). This
continuous case can actually be regarded as a string discretized to
infinitely many small pieces. We define the residual energy as the
difference of the potential energy between the current discretized
one and the continuous one.

Subdividing the spring will bring the entire system closer to the
actual continuous case (since the newly introduced vertices will fall
down), so the residual energy will decrease. The spring system will
start to bounce around upon discretization and we assume that there
are damping forces in the system. After discretizing the spring into
c pieces of equal length, the new system will have a residual en-
ergy of O(l2/c) when reaching the equilibrium state in the new
discretization setting. If the system is in the critical damping con-
dition, the energy will decrease by a factor of e after t =

√
ms/ξ

seconds, where ms is the mass of the spring and ξ is the stiffness.
Therefore, the recovery time needed from the coarse level to the
fine one is O(

√
ms/ξ lnc).

In our case, we have K = cO(1) which depends on the embedded
simulator and the collision state. Also we set lnK ≤ 7 to cover most
of the cases. We use the density and the Frobenius norm of the
stretching and bending stiffness matrix in [WOR11] to estimate√

ms/ξ. ms typically ranges from 0.1 to 1, while the value of ξ is
between 10 and 100.

Combining all of them above, we have an estimation of
c0
√

ms/ξ/∆t as the number of iteration steps needed.

Appendix C: Detailed Runtime Data

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Junbang Liang & Ming C. Lin / Time-Domain Parallelization for Accelerating Cloth Simulation

Table 6: Performance Scaling Results. Values in the table indicate the total running time of each setting in minutes, while the numbers in the
bracket indicate the speedup with respect to the baseline performance on 1-core system. Compared to the embedded OpenMP implementation
of ARCSim, we achieved much better performance and nearly-linear scalability.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Time step (low-res) 1/50s
Time step (high-res) 1/500s 1/500s 1/300s 1/200s 1/200s 1/200s 1/500s

of triangles(low-res) 1375 1732 1576 6K 4K 4K 4K
of triangles(high-res) 20K 40K 30K 94K 58K 65K 65K
of triangles(obstacle) 20K 20K 1280 15K 28K 762 4K

K 368 381 564 187 158 212 1323
1-core(ARCSim) 947(1.00) 2010(1.00) 727(1.00) 7166(1.00) 5130(1.00) 2675(1.00) 56534(1.00)

2-core 467(2.03) 1003(2.00) 333(2.19) 3181(2.23) 1904(2.63) 1755(1.51) 26365(2.13)
4-core 221(4.29) 487(4.13) 155(4.70) 1545(4.60) 1427(3.51) 709(3.74) 13869(4.03)
8-core 118(8.06) 249(8.07) 64.1(11.4) 807(8.80) 624(8.03) 360.6(7.36) 6772(8.26)
16-core 56.1(16.9) 123(16.4) 28.7(25.3) 405(17.6) 321(15.6) 182(14.6) 3446(16.2)
32-core 31.1(30.4) 69(29.3) 15.4(47.4) 233(30.5) 177(28.3) 85.0(31.2) 1802(31.0)
64-core 17.6(54.0) 40.5(50.0) 9.65(75.4) 116(61.1) 98.2(51.0) 44.3(60.0) 1108(50.5)

128-core 12.8(74.1) 26.8(75.0) 7.15(102) 61.5(116) 50.4(99.5) 28.8(92.3) 596(93.8)
256-core 8.64(106) 15(134) 5.77(121) 31.3(123) 40.6(123) 26.1(102) 384(145)
512-core 8.76(105) 15.3(132) 5.98(117) 27.6(140) 34.0(147) 25.0(106) 167(333)

2-core(OpenMP) 512(1.85) 746(2.69) 336(2.17) 3947(1.80) 2357(2.13) 1574(1.69) 17845(2.37)
4-core(OpenMP) 474(2.00) 668(3.01) 317(2.29) 3656(1.94) 2110(2.37) 1064(2.49) 16569(2.56)
8-core(OpenMP) 447(2.11) 595(3.38) 315(2.30) 3014(2.36) 1871(2.68) 948(2.80) 14692(2.88)

12-core(OpenMP) 431(2.20) 585(3.43) 262(2.78) 1547(4.59) 1840(2.72) 913(2.91) 14448(2.93)

Table 7: Results with Increasing Length of the Simulation. All settings are the same as those in Table 6, except with varied simulation
durations.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Small 20 Seconds 17.3(53.1) 33.0(61.1) 8.87(78.8) 74.7(95.1) 68.2(73.4) 30.5(87.2) 642(66.0)
Time 40 Seconds 30.6(60.0) 53.4(75.4) 13.8(101) 142(100) 127(78.6) 59.7(88.8) 1224(69.2)
Steps 80 Seconds 57.4(63.9) 103(78.5) 28.4(98.6) 266(107) 245(81.8) 110(96.1) 2247(75.4)
Large 20 Seconds 12.8(74.1) 26.8(75.0) 7.15(102) 61.5(116) 52(96.4) 28.8(92.3) 452(93.8)
Time 40 Seconds 20.4(92.8) 39.5(102) 12.8(114) 119(119) 93.6(107) 38.1(107) 723(117)
Steps 80 Seconds 36.6(104) 68.8(117) 19.5(150) 227(125) 163(123) 54.2(115) 1221(139)

Table 8: Performance Scaling Results with smaller time steps for low-res simulation. All settings are the same as those in Table 6, but with
the low-res simulation time steps decreased to twice as much as those in high-res simulation.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Time step (low-res) 1/250s 1/250s 1/150s 1/100s 1/100s 1/100s 1/250s
Time step (high-res) 1/500s 1/500s 1/300s 1/200s 1/200s 1/200s 1/500s

K 116 137 267 117 87.9 113 257
1-core(ARCSim) 919(1.00) 2013(1.00) 699(1.00) 7101(1.00) 5012(1.00) 2654(1.00) 55939(1.00)

2-core 459(2.00) 1007(2.00) 333(2.10) 3188(2.23) 2128(2.35) 1280(2.07) 25256(2.21)
4-core 223(4.12) 517(3.89) 162(4.32) 1555(4.57) 1118(4.48) 693(3.83) 14679(3.81)
8-core 111(8.25) 258(7.81) 78.7(8.88) 1015(7.00) 814(6.16) 378(7.02) 7435(7.52)

16-core 57.7(15.9) 131(15.4) 42.8(16.3) 445(16.0) 268(18.7) 214(12.4) 4604(12.1)
32-core 34.1(27.0) 74.0(27.2) 15.5(45.2) 247(28.8) 146(34.3) 89.5(29.6) 1949(28.7)
64-core 21.3(43.0) 45.4(44.3) 9.42(74.2) 28.8(51.4) 100(49.9) 55.3(48.0) 1246(44.9)
128-core 17.3(53.1) 33.0(61.1) 8.87(78.8) 74.7(95.1) 52(96.4) 30.5(87.2) 846(66.0)
256-core 15.4(59.6) 29.3(68.6) 8.93(78.2) 43.3(89.1) 47.8(105) 26.4(100) 432(129)
512-core 14.8(62.1) 28.2(71.5) 9.08(76.9) 44.4(87.0) 40.5(124) 25.8(103) 240(232)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

