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Abstract— Purpose: In this paper, we describe a method
for recovering the tissue properties directly from medical
images and study the correlation of tissue (i.e. prostate)
elasticity with the aggressiveness of prostate cancer using
medical image analysis.
Methods: We present a novel method that uses geomet-
ric and physical constraints to deduce the relative tissue
elasticity parameters. Although elasticity reconstruction, or
elastograph, can be used to estimate tissue elasticity, it is
less suited for in-vivo measurements or deeply seated or-
gans like prostate. We develop a method to estimate tissue
elasticity values based on pairs of images, using a finite-
element based biomechanical model derived from an initial
set of images, local displacements and an optimization-
based framework.
Results: We demonstrate the feasibility of a statistically
based classifier that automatically provides a clinical T-
stage and Gleason score based on the elasticity values
reconstructed from computed tomography (CT) images.
Conclusions: We study the relative elasticity parameters by
performing cancer Grading/Staging prediction and achieve
up to 85% accuracy for cancer Staging prediction and up to
77% accuracy for cancer Grading prediction using feature
set which includes recovered relative elasticity parameters
and patient age information.

Index Terms— Physically-based Simulation, Elasticity
Recovery

I. INTRODUCTION

Medical robots have the potential to perform surgical proce-
dures beyond current clinical capabilities. To enable medical
robots to safely operate within highly unstructured, deformable
human bodies and to compute desired and accurate force
feedback for haptic display requires knowledge about the
deformation of soft tissues and organs, which are characterized
by patient-specific elastic parameters. In addition to medical
robots, surgical simulation are also increasingly used for
rapid prototyping of clinical devices, pre-operation planning
of medical procedures, virtual training exercises for surgeons
and supporting personnel, etc.

Tissue elasticity properties are important parameters for
developing realistic and predictive surgical simulation and for
designing responsive and dexterous surgical manipulators. Fur-
thermore, studies have shown that the tissue stiffness described
by the tissue properties may indicate abnormal pathological
process. Ex-vivo, measurement-based methods, such as [1], [2]
using magnetic resonance imaging (MRI) and/or ultrasound,
were proposed for study of prostate cancer tissue. However,
previous works in material property reconstruction often have

limitations with respect to their genericity, applicability, effi-
ciency, accuracy, and costs [3]. More recent techniques, such
as inverse finite-element methods [3]–[7], stochastic finite-
element methods [8], and image-based ultrasound [9] have
been developed for in-vivo soft tissue analysis, when cost
consideration is involved (e.g. using CT instead of MRI).

In this paper, we present an improved method that uses
geometric and physical constraints to deduce the relative tissue
elasticity parameters. Although elasticity reconstruction, or
elastography, can be used to estimate tissue elasticity, it is less
suited for in-vivo measurements or deeply seated organs like
prostate. We describe a non-invasive method to estimate tissue
elasticity values based on pairs of CT images, using a finite-
element based biomechanical model derived from an initial
set of images, local displacements, and an optimization-based
framework. To demonstrate its potential use, we further study
the possible use of tissue (i.e. prostate) elasticity to evaluate
the prognosis of prostate cancer patients, given at least two set
of CT images. The clinical T-stage of a prostate cancer is a
measure of how much the tumor has grown and spread; while
a Gleason score based on the biopsy of cancer cells indicates
aggressiveness of the cancer. They are commonly used for
cancer staging and grading.

Given the recovered tissue properties reconstructed from
analysis of medical images and patient’s ages, we develop
a multiclass classification system for predicting clinical T-
stage and Gleason scores for prostate cancer patients. We
demonstrate the feasibility of a statistically-based multiclass
classifier that predicts a supplementary assessment on cancer
T-stages and cancer grades using the computed elasticity
values from medical images, as an additional clinical aids for
the physicians and patients to make more informed decision
(e.g. more strategic biopsy locations, less/more aggressive
treatment, etc). Concurrently, extracted image features [10]–
[12] using dynamic contrast enhanced (DCE) MRI have also
been suggested for prostate cancer detection. These methods
are complementary to ours and can be used in conjunction with
ours as a multimodal classification method to further improve
the overall prediction accuracy.

II. RELATED WORK

Image-based Deformable-body Material Properties Recon-
struction Researchers have proposed different methods for
reconstructing material parameters from images and videos,
from model-based optimization [13] to data-driven machine
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learning methods [14]. We use a simulation-optimization
framework, optimizing the physical properties of the de-
formable body in order to match the target shape as closely as
possible. We extend the work from [15] by nearly tripling the
training data, and by more in-depth comparison to demonstrate
the effectiveness of the approach.
Bio-Tissue Modeling Bio-tissue modeling has been exten-
sively studied by many researchers. We refer readers to
this nice survey on bio-tissue modeling in medical simula-
tions [16]. The survey summed up the three generations so
far for the research in the bio-tissue modeling in medical
simulation. The first generation simulators only consider the
geometrical nature of human tissue. The second one focuses
on the physical interaction of the bio-tissue, after which the
last generation can already include the functional of the human
organs. Commonly used bio-tissue modeling methods include
mass-spring model and finite element methods. Mass-spring
model is known to be fast but low in accuracy. Finite element
method becomes more and more commonly used because
of the better precision and the increase in the computation
resources.
Hyperelastic Material Model Material model plays a vital
role in bio-tissue simulation. Material model can be roughly
divided in to two classes, linear and nonlinear material mod-
els, differing on the relationship between the stress and the
strain [17]. For many materials, linear elastic models cannot
accurately capture the observed material behavior; hyperelas-
tic material models that can capture the nonlinear material
behavior are widely used when the object is subjected to large
strain. For example, animal tissue and some common organic
materials are often simulated using hyperelastic material. In
this project we choose to use hyperelastic material model.

III. METHOD

Given two sets of multi-view images of a deformable object,
our framework can automatically estimate relative elasticity
properties of it. We assume that (at least) two sets of multiple-
view images are given, along with some initial guess at the
elasticity parameters. We first reconstruct the 3D geometry
from the images, and in the meanwhile generate the subregions
of the object for computing the subjected traction force. Based
on the traction force, we apply a simulation-optimization
framework, consisting of the forward simulation and the
inverse optimization, to compute the best set of elasticity
parameters that yields the deformed shape with the minimal
difference compared to the target object. Finally using the
estimated relative elasticity parameter we train a classifier to
the desired cancer prognostic scores.

A. Geometry Reconstruction and Mesh Generation

There are many approaches to reconstructing 3D geometry
from multiple images; the method chosen depends upon the
image sources. We briefly summarize below how the 3D
geometry of input objects can be constructed using various
image sources.

Medical Images are usually taken when the organs are in a
static or quasi-static state. There are several widely-used imag-
ing technologies, such as X-ray radiography, magnetic reso-
nance imaging (MRI), medical ultrasonography or ultrasound,
elastography, tactile imaging, thermography, nuclear medicine
functional imaging, computed tomography (CT) scanning or
computerized axial tomography (CAT), etc. Each set of CT
or CAT scans provides image “slices”, or the cross-sectional
images of anatomy. Variants of MRI and ultrasound images
can be used to reconstruct anatomical 3D geometry using
public-domain libraries such as ITK-SNAP [18] or commercial
systems such as AVS, 3D-Doctor, MxAnatomy, etc.
2D Drawings and Sketches can be converted to 3D models
using widely available commercial CAD and 3D modeling
systems, such as Rhino, Autodesk LABS, Dassault Systems
SolidWorks, etc.
Multi-view Images from Cameras/Camcorder and other
imaging technologies have been used for 3D geometry re-
construction. Excellent surveys of methods of extracting 3D
models from images can be found in [18]–[21]. These methods
include algorithms using images for which camera parameters
are unknown, uncalibrated structure-from-motion methods,
metric reconstruction from images with additional knowledge
about images, etc.
FEM Mesh Generation is accomplished by first building
the input surface meshes as described above. If medical
images (e.g. CT, MRI, etc.) are used as input they require an
additional step before mesh generation: segmenting using ITK-
SNAP [18] into multiple regions. After mesh simplification
and smoothing, the entire region of interest can be tetrahe-
dralized using TetGen [22].

B. Forward Simulation: Bio-Tissue Modeling
This step uses the elasticity parameters generated from

the inverse optimization process to compute the amount of
deformation that the body would undergo. We use the FEM
to solve the following governing equation of the deformable
body. ∫

Ω

δuT ρü dΩ +

∫
Ω

δ(ε)Tσ dΩ

−
∫

Ω

δuTb dΩ−
∫

Γ

δuT t dΓ = 0,

(1)

with u as the displacement field, ε as the strain tensor, σ as
the stress tensor, b as the body force and t as the tractions on
the boundary Γ of the deformable body Ω. For the quasi-static
deformation process the ü = 0. We can rewrite Eqn. 1 as[ ∫

Ω

δ(ε)Tσ dΩ−
∫

Ω

δuTb dΩ

]
−
[ ∫

Γ

δuT t dΓ

]
= 0, (2)

with the first part of the equation as the internal body force
and the second part as the external force. The computation
of the stress force is determined by the material properties.
Researchers have proposed many models for simulating dif-
ferent kinds of materials. These material models define the
relation between the stress and the strain. To simulate the
human organs in the abdomen and the soft tissue surrounding
those organs, we use the isotropic hyperelastic material model,
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which is used commonly to approximate the deformation
behavior of human tissue [23]. The stress-strain relation for
the hyperelastic material model is defined through the strain
energy density function Ψ (energy per unit undeformed vol-
ume). We will be using the Green-Lagrange strain tensor E
with the second Piola-Kirchhoff stress tensor σPK2 [24]. The
boundary conditions we apply are the tractions t applied on
the boundary Γ. Our forward simulation framework uses an
invertible FEM [25] to ensure that the deformed elements
have positive volumes in the coupled simulation-optimization
process.

1) Material Model: The elastic behavior of deformable bod-
ies varies for different materials. For small deformations, most
elastic materials (e.g. springs) exhibit linear elasticity, which
can be described as a linear function between stress and strain.
Linear Elasticity Material Model: The linearly elastic model
assumes a constant variation of stress and strain according to
Hooke’s law, with no permanent deformations after the applied
stresses are removed. This holds true until the yield point,
which is followed by an unrestricted plastic strain after yield.
Assuming isotropic linear elasticity, we can write

σ = Dε, (3)

where σ is the stress tensor induced by the surface forces, ε
is the strain tensor defined by the deformation gradient, and
D is a matrix defined by the material property parameters µ
(D = D(µ)). Assuming an isotropic material, the commonly
used material property parameters are Young’s modulus E and
Poisson’s ratio ν.
Isotropic Nonlinear Hyperelastic Material Model: For
many materials, linear elastic models cannot accurately capture
the observed material behavior. Hyperelastic material models
better describe the nonlinear material behavior exhibited when
deformable bodies are subjected to large strains. For example,
animal tissue and some common organic materials are known
to be hyperelastic [23]. The nonlinearity is captured through
the energy density function Ψ for hyperelastic material mod-
els. The energy function is a function of the strain tensor ε and
the material property parameters µ, where Ψ = Ψ(ε,µ). With
the energy function, the stress tensor is computed by taking
the derivative of the energy function over the strain tensor.

σ =
∂Ψ(ε,µ)

∂ε
(4)

The energy function takes different forms for different models
of hyperelastic materials.
Energy Function: The energy density function determines the
nonlinear behavior of the deformable object. Human organs
are hyperelastic and nearly isotropic. Generally speaking, for
an isotropic material model, the energy function is expressed
as a function of the invariants I1, I2 and I3 of the deformation
gradient F,

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

I3 = λ2
1λ

2
2λ

2
3

(5)

and the deformation gradient F is a function of the strain
F = F(ε). One general energy function for this class of

incompressible materials, proposed by Rivlin [26], is

ΨR =

∞∑
i,j=0

Cij(I1 − 3)i(I2 − 3)j , (6)

where Cij are the material parameters. To account for volume
changes, compressible forms of this class of material are
proposed by adding the third invariant to the above Rivlin
expression.

Ψ = ΨR + Ψ(J), (7)

where J is the volume ratio J =
√

I3.
Mooney-Rivlin material model is widely known for its

accuracy in modeling this property; we use this model in our
implementation because of its popularity and wide adoption
in both medical and engineering applications. In this paper,
we use this form of the energy function of Mooney-Rivlin
material model [27], [28]:

Ψ =
1

2
µ1((I2

1−I2)/I
2
3
3 −6)+µ2(I1/I

1
3
3 −3)+v1(I

1
2
3 −1)2, (8)

where µ1, µ2 and v1 are the material parameters. The first two
elasticity parameters, µ1 and µ2, are related to the distortional
response (i.e., together they describe the response of the
material when subject to shear stress, uniaxial stress, and
equibiaxial stress), while the last parameter, v1, is related to
volumetric response (i.e., it describes the material response to
bulk stress).
Incompressibility: In our simulation, we model abdominal
organs as incompressible material [29]. There are several op-
tions for achieving incompressibility: One can add constraints
to the governing equation to ensure that the determinant of
the jacobian J of the deformation gradient F is equal to
one. Alternatively, one can use the third material parameter
(v1 in Eqn. 8) to approximate incompressibility. To achieve
incompressibility, we choose a fairly large v1; this means v1

will not be optimized. In order to accurately describe the
material, we reconstruct both µ1 and µ2.

2) The Boundary Condition : The boundary condition is
critical in solving Eqn. 2. The boundary condition can be
either the displacement field or the tractions on the boundary.
Our target applications for this work include both medical
applications and sketch-driven animation; for medical appli-
cations, we use the contact force between the organ and the
surrounding tissue as the boundary condition. To compute the
contact force we make two assumptions:

1) We simulate the surrounding tissue using a linear mate-
rial model.

2) We know the (default) elasticity parameters for the
surrounding tissue.

During the model reconstruction step, we include the surround-
ing soft tissue of the prostate, as well as the bones of the male
pelvis area (as shown in Fig. 2). We simulate the surrounding
tissue using a linear material model. This assumption is valid
because the volume of the surrounding tissue is far larger than
that of the target organ, so the amount of strain ∂us

∂Xs
can be

considered a small strain. The displacement of the surface of
the surrounding tissue will populate the displacement field us.
For the second assumption, we set the elasticity parameters of
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the surrounding tissue to a default value. Then the elasticity
parameters of the target organ become relative values with
respect to the surrounding tissue. The second assumption is
necessary for several reasons:

1) It is almost impossible to assess the elasticity properties
of the tissue surrounding the target organ in vivo;

2) without the boundary condition we cannot accurately
solve the governing equation, Eqn. 2; and

3) the relative material properties of the target organ, being
able to normalize the per-patient fluctuation in absolute
elasticity values due to varying degrees of hydration and
other temporary factors, have already proven to be useful
for cancer detection [30].

Given the displacement field us of the surrounding tissue, we
compute the contact force using the following equation:

Kus = f , (9)

where K is the stiffness matrix of the surrounding tissue
(whose elasticity parameters are known), and f is the resulting
contact force. Friction does not have a notable impact on
our experimental results and also has little impact in practice
between organs, so we did not model friction in the simulation.
The FEM domain for the computation consists of elements
belonging only to the surrounding tissue. An example of the
reconstructed contact force is shown in Fig. 2a.

3) Generalized Minimal Residual Solver: Classical iterative
solvers such as the stationary iterative method Jacobi are suit-
able for well-conditioned linear system, such as the general-
ized conjugate gradient method. Our linear system, however, is
subjected to noise. The problem itself is not well-conditioned.
Thus we choose to use Generalized Minimal Residual Solver
(GMRES). The GMRES solver solves the linear system as
an optimization problem for each step. The essential element
of GMRES solver is the Arnoldi iteration. For each step n,
GMRES solver approximates the exact solution x = A−1b
such that the residual

‖rn‖2 = ‖Axn − b‖2, (10)

is minimized. GMRES can be regarded as the Krylov subspace
method, where the solution x for each step is a vector in
the Krylov subspace K spanned as {x0, Ax0, . . . , A

n−1xn}.
Since xn ∈ Kn, we can write xn as

xn = Knc (11)

We can rewrite Eqn. 10 as

‖rn‖2 = ‖Axn − b‖2 = ‖AKnc− b‖2 → min (12)

We compare the solution to our linear system by using GM-
RES and the generalized conjugate gradient solver in Fig. 1.

C. Inverse Process: Optimization for Parameter
Identification

To estimate the patient-specific relative elasticity, our frame-
work minimizes the error due to approximated parameters in
an objective function. Our objective function as defined in

Fig. 1. Surface Nodes Displacements from GCG Solver and GMRES
Solver. The upper figure shows the surface nodes displacements com-
puted using the Generalized Conjugate Gradiant solver while the bottom
figure shows that using the Generalized Minimal Residual Solver. The
variation of the displacements computed from GCG solver is larger than
the GMRES solver.

Algorithm 1: The main loop of the GMRES solver

1 initialize v1 = b/‖b‖;
2 for n = 1, 2, 3, . . . do
3 Perform Arnoldi iteration to compute new entries for

Hn and Vn;
4 Find y that minimize ‖AVky − b‖;
5 end

Eqn. 13 consists of the two components. The first part is the
difference between the two surfaces – one reconstructed from
the reference (initial) set of images, deformed using FEM
simulation (as described in Sec. III-B) with the estimated
parameters toward the target surface, and one target surface
reconstructed from the second set of images. This difference
is measured by the Hausdorff distance [31]. In addition we add
a Tikhonov regularization [32], [33] term, which improves the
conditioning of a possibly ill-posed problem.

With regularization, our objective function is given as:

µ = argmin
µ

∑
‖d(Sl,St)‖2 + λΓSl, (13)

with d(Sl,St) as the distance between deformed surface and
the reference surface, λ as the regularization weight, and Γ as
the second-order differential operator.

The second-order differential operator Γ on a continuous
surface (2-manifolds) S is the curvatures of a point on the
surface. The curvature is defined through the tangent plane
passing that point. We denote the normal vector of the tangent
plane as n and the unit direction in the tangent plane as eθ.
The curvature related to the unit direction eθ is κ(θ). The
mean curvature κmean for a continuous surface is defined as,
κmean = 1

2π

∫ 2π

0
κ(θ)dθ. The corresponding unit direction e1

and e2 are orthogonal to each other. In our implementation,
we use triangle mesh to approximate a continuous surface. We
use the 1-ring neighbor as the region for computing the mean
curvature normal on our discrete surface Sl. We treat each
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(a) (b)

Fig. 2. External Force Field and the Overlay of Initial/Target Surfaces. (a) shows the external force field we recovered. (b) shows the differences
between the initial organ surface (solid dark red) and the target surface (transparent yellow).

triangle of the mesh as a local surface with two conformal
space parameters u and v. With these two parameters u and
v the second-order differential operator Γ on vertex x is,
∆u,vx = xuu + xvv .

D. Classification Methods
For classification of cancer prognostic scores, we develop a

classifier to predict patient cancer T-Stage and Gleason score
based on the relative elasticity parameters recovered from CT
images. Both the prostate cancer T-stage and the Gleason
score are generally considered as ordinal responses. We further
compare the effectiveness of ordinal logistic regression [34],
multinomial logistic regression [35] and random forests [36]
in the context of prostate cancer staging and grading in
Sec. IV. We use the RBF kernel to project our feature to
higher dimensional space. For oridinal logistic regression, we
choose the cumulative logit model. It is also known as the
“proportional-odds model”. For multinomial or polytomous
logistic regression, we use the softmax loss function. We did
not directly compare the elasticity with other methods. First of
all, ex-vivo methods can substantially change the environment
of the organ, resulting in the change of the organ itself. So
elasticity parameters cannot be compared directly. Moreover, it
is hard to obtain real patient data for testing. Special machines
or MR sequences can indeed measure the elasticity in-vivo, but
they are not frequently used for routine screening. The reported
data in previous literature are also difficult to reproduce. So
alternatively we validated our method against synthetic data,
where the ground truth values are known precisely.

IV. PATIENT DATA STUDY

A. Preprocessing and Patient Dataset
Given the CT images (shown in Fig. 3a) of the patient, the

prostate, bladder and rectum are first segmented in the images.
Then the 3D surfaces (shown in Fig. 3b) of these organs are
reconstructed using VTK and these surfaces would be the
input to our elasticity parameter reconstruction algorithm. Our

patient dataset contains 256 (51 as the reference and 205 as
target) sets of CT images from 51 patients, each patient having
2 to 15 sets of CT images. Every patient in the dataset has
prostate cancer with cancer T-stage ranging from T1 to T3,
Gleason score ranging from 6 to 10, and age from 50 to 85.
Gleanson scores are usually used to assess the aggressiveness
of the cancer.

B. Cancer Grading/Staging Prediction based on
Prostate Elasticity Parameters

We further study the feasibility of using recovered
elasticity parameters as a cancer prognostic indicator using
our classifier based on relative tissue elasticity values and
ages. Two classification methods, ordinal logistic regression
(ordinal LR) and multinomial logistic regression (multinomial
LR), were tested in our study. We test each method with three
sets of features. The first set consists of a single feature, the
relative tissue elasticity value µ̂. The second set of features
contains both the relative tissue elasticity value and the age.
For comparison the third set of features contains only the age
information. Our cancer staging has C = 3 classes, T1, T2
and T3. And the cancer grading has G = 5 classes, from 6 to
10. In our patient dataset, each patient has at least 2 sets of
CT images. The elasticity parameter reconstruction algorithm
needs 2 sets of CT images as input. We fix one set of CT
images as the initial (reference) image and use the other M
images. By registering the initial image to the target images,
we obtain one elasticity parameter µ̂i, i = 1 . . .M . We train
our classifier on the estimated parameters and perform both
per-patient and per-image cross validation.

Per-Image Cross Validation: We treat all the target images
(N = 205) of all the patients as data points of equal
importance. In this experiment, we use leave-one-out cross-
validation to evaluate prediction errors of classifiers trained
on the three feature sets. Briefly, in each iteration of the
cross validation, one image is held out and the classifier is
trained on the remaining 204 images. There are 205 such
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(a) (b)

Fig. 3. Real Patient CT Image and Reconstructed Organ Surfaces. (a) shows one slice of the parient CT images with the bladder, prostate and
rectum segmented. (b) shows the reconstructed organ surfaces.

iterations, one for each image. The trained classifier’s errors
on the held-out images are averaged to give the final prediction
errors. The results for cancer staging (T-Stage) prediction are
shown in Fig. 4a 5a and that for cancer grading (Gleason
score) prediction are shown in Fig. 4b 5b. The error metric
is measured as the absolute difference between the predicted
cancer T-Stage and the actual cancer T-Stage. Zero error-
distance means our classifier accurately predicts the cancer
T-Stage.

The logistic regression methods (shown in Fig. 4) in general
outperforms the random forests method (shown in Fig. 5). And
the multinomial method outperforms the ordinal method for
both cancer staging (T-Stage) and cancer aggression (Glea-
son score) prediction. This is because the dimension of the
unknown regression coefficients of the multinomial LR for
cancer staging classification (with elasticity parameter and age
as features) is larger than that of the ordinal LR. With the
‘age’ feature, we obtain up to 85% accuracy for predicting
cancer T-Stage using multinomial LR method, 82% using
ordinal LR method and 65% using random forests method.
For Gleason score prediction we achieve up to 77% accuracy
using multinomial LR method, 62% using ordinal LR method
and 48% using random forests method. Compared to age-
only input features, the accuracy using combined features has
also largely increased, effectively showing that the estimated
elasticity parameter is a critical indicator for predicting the
cancer statistics.
Per-Patient Cross Validation: For patients with more than
2 sets of images, we apply Gaussian downsampling kernel to
the array µ̂i, i = 1 . . .M to compute the sampled elasticity
parameter as the elasticity feature of the patient. We first train
our classifier using the elasticity feature of the 50 patients then
test the trained classifier on the remaining one patient not in the
training set. We repeat this process for each of the 51 patients.
We also use the three sets of input features described before
for comparison. The error distribution for cancer staging (T-
Stage) prediction results are shown in Fig. 6a 7a and the error
distribution of cancer grading (Gleason score) prediction are
shown in Fig. 6b 7b. We observe that the logistic regression
methods (shown in Fig. 6) in general outperforms the random
forests method (shown in Fig. 7). More interestingly, the age
feature helps to increase the prediction accuracy by 10% for
staging prediction and 30% for Gleason scoring prediction
for the logistic regression methods (both the multinomial and

ordinal). But not so much for the random forests classifier.
With the age feature, our multinomial classifier achieves
up to 82% accuracy for predicting cancer T-Stage and up
to 80% accuracy for predicting Gleason scores. When the
estimated parameter is removed from the feature set, the
accuracy has also largely decreased, similar to the per-image
study. Our ordinal classifier achieves up to 80% for cancer
T-Stage prediction and 60% for Gleason score prediction.
The random forests classifier obtains 68% for cancer T-Stage
prediction (without age information) and 48% for Gleason
score prediction (with age information).

Among the 18% failure cases for cancer staging prediction,
15% of our multinomial classifier prediction with age feature
is only 1 stage away from the ground truth. And for the
failure cases for scoring prediction, only 10% of the predicted
Gleason scores is 1 away from the ground truth and 13% of
them are 2 away from the ground truth.

V. CONCLUSION AND FUTURE WORK

In this paper, we present an improved, non-invasive tissue
elasticity parameter reconstruction framework using CT im-
ages (that is also applicable to other image modalities). We
further studied the correlation of the recovered relative elastic-
ity parameters with prostate cancer T-Stage and Gleason score
for multiclass classification and prediction of cancer T-stages
and grades. The prediction accuracy on our patient dataset
using multinormial logistic regression method is up to 84%
accurate for predicting cancer T-stages and up to 77% accurate
for predicting Gleason scores, which is a lot higher when only
using age information. This study further demonstrates the
effectiveness of our algorithm for recovering (relative) tissue
elasticity parameter in-vivo and its potential roles in cancer
screening and diagnosis. Other imaging modalities can also be
used in our method, as long as the corresponding segmentation
and 3D mesh reconstruction algorithm are provided. The main
limitation of our method is that the input of our method must
be at least two sets of images, with the deformation of the
organ between them.
Future Work: This study is performed on 256 sets of images
from 51 prostate cancer patients all treated in the same
hospital. More image data from more patients can provide
a much larger set of training data, thus further improving the
training and classification results. Another possible direction is
to perform the same study on normal subjects and increase the
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(a) (b)

Fig. 4. Error Distribution of Cancer Grading/Staging Prediction for Per-Image Study using Logistic Regression Method. (a) shows error distribution of
our cancer staging prediction using the recovered prostate elasticity parameter and the patient’s age. For the given patient dataset, the multinomial
classifier (shown in royal blue and sky blue), with up to 85% accuracy, outperforms the ordinal classifier (shown in crimson and coral), with up to
82% accuracy for predicting cancer T-Stage. (b) shows error distribution of our cancer grading prediction with 77% accuracy using multinomial LR
and 62% using ordinal LR.

(a) (b)

Fig. 5. Error Distribution of Cancer Grading/Staging Prediction for Per-Image Study using Random Forests Method. (a) shows error distribution
of the cancer staging prediction using the recovered prostate elasticity parameter with/without the patient’s age. For the given patient dataset, the
random forests with patient’s age (shown in crimson), with up to 65% accuracy, outperforms the classifier with only the elasticity as the only feature
(shown in royal blue), with up to 64% accuracy for predicting cancer T-Stage. (b) shows error distribution of the cancer grading prediction with 47%
accuracy using both elasticity and age as features and 40% using only elasticity. Using Random Forest achieves less accuracy than our chosen
Logistic Regression methods.

(a) (b)

Fig. 6. Error Distribution of Cancer Aggression/Staging Prediction for Per-Patient Study using Logistic Regression Methods. (a) shows the accuracy
and error distribution of our recovered prostate elasticity parameter and cancer T-Stage. For our patient dataset, the multinomial classifier, with up
to 84% accuracy (shown in royal blue and sky blue) outperforms the ordinal classifier, with 82% accuracy (shown in crimson and coral). (b) shows
error distribution of our cancer grading prediction with 77% accuracy using multinomial LR and 70% using ordinal LR.



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2018

(a) (b)

Fig. 7. Error Distribution of Cancer Aggression/Staging Prediction for Per-Patient Study using Random Forests Method. (a) shows error distribution
of our cancer staging prediction using the recovered prostate elasticity parameter with/without the patient’s age. For our patient dataset, the random
forests without patient’s age (shown in royal blue), with up to 67% accuracy, outperforms the classifier with only the elasticity as the only feature
(shown in royal crimson), with up to 65% accuracy for predicting cancer T-Stage. (b) shows error distribution of our cancer grading prediction with
48% accuracy using both elasticity and age as features and 46% using only elasticity.

patient diversity from different locations. A large-scale study
can enable more complete analysis and lead to more insights
on the impact of variability due to demographics and hospital
practice on the study results.
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