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Virtual Try-On
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www.ulta.com

www.zennioptical.com/

www.facecake.com

www.timberland.com

http://www.ulta.com/
http://www.zennioptical.com/
http://www.facecake.com/
http://www.timberland.com/


Virtual Reality
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Games (CyberPunk) Meetings 
(www.roomkey.co/workshops)

Movies (Ready Player One)

http://www.roomkey.co/workshops


Physical Simulation
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Simulation-Based Try-On?
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Challenges for Virtual Try-On

• Accurate reconstruction of human.

• Faithful estimation of garment materials.

• User-friendly recovery of garment geometry.

• Real-time cloth simulation system.

• Fast and realistic visual rendering.
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Thesis Statement

• Dynamic constraints can be effectively enforced in human body 

estimation, garment material and geometry reconstruction, 

simulation acceleration, and draping prediction for virtual try-

on systems, by coupling machine learning and optimization 

methods with cloth simulation.
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Proposed Solutions

• Accurate reconstruction of human.

• Shape-aware human body recovery using multi-view images

• Faithful estimation of garment materials.

• Differentiable cloth simulation for material optimization

• User-friendly recovery of garment geometry.

• Joint estimation of human and garment from video

• Real-time cloth simulation system.

• Time-domain parallelization for accelerating cloth simulation

• Fast and realistic visual rendering.

• Dynamics-Inspired garment draping prediction
12
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Outline

• Background

• Reconstruction
• Shape-aware human body recovery using multi-view images

• Differentiable cloth simulation for material optimization

• Joint estimation of human and garment from video

• Synthesis
• Time-domain parallelization for accelerating cloth simulation

• Dynamics-Inspired garment draping prediction

• Conclusion 
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Introduction to Simulation
• What is simulation?
• Given the states of objects, compute their evolutions through time

• Why simulation?
• Approximation to the real world

• Design, control, etc.
• Convenient: no extra equipment required

• How to do simulation?

19



Introduction to Simulation

• Partial differential equation of Newton’s law:
• Solve 𝑦(𝑥, 𝑡) satisfying !

!"
!#! =

$
%𝑓(𝑦,

!"
!&) where 𝑦 𝑥, 0 = 𝑦'(𝑥)

• Discretization to ordinary differential equations:
• Solve 𝒚 𝑡 = [𝑦(𝑥(, 𝑡)]( satisfying !

!𝒚
!#!

= $
*
𝒇(𝒚, ∆𝒚

∆𝒙
) where 𝒚 0 = [𝑦'(𝑥()](

𝑦: Position
𝑥: Configuration space
𝑡: Time
𝑓: Force field
𝜌: Density
𝑚: Mass
[∗]!: Vector stacked by elements *
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Collision Handling

• Challenge: 0-thickness deformable mesh

• Self-collision

• Non-penetration (continuous detection)

• Dynamic/static friction

• State-of-the-art solutions

• Quadratic optimization [Narain et al., SIGGRAPH Asia 2012]

• Dry frictional contact [Ly et al., TOG 2020]

21



Inverse Problems

• Definition: given the simulation results (images, videos, meshes, etc.), 

estimate the initial/internal values of the system

• Traditional solution:

• Gradient-free optimization [Yang et al., TOG 2018]

• Data-driven methods [Bouman et al., ICCV 2013]

• Learning-based solution:

• Simulation + supervised learning [Yang et al., ICCV 2017]

22



Outline

• Background

• Reconstruction
• Shape-aware human body recovery using multi-view images

• Differentiable cloth simulation for material optimization

• Joint estimation of human and garment from video

• Synthesis
• Time-domain parallelization for accelerating cloth simulation

• Dynamics-Inspired garment draping prediction

• Conclusion 
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Junbang Liang, Ming C. Lin. Shape-Aware Human Pose and Shape Reconstruction Using Multi-View Images. ICCV 2019



Motivation

• Accurate reconstruction of human.

• Accuracy: human shape

• Convenience: predicting from RGB images

24



Limitations with State-of-the-Art

• 2D/3D pose from images [Mehta et al., 3DV 2017]
- Skeleton Only

• Pose and shape from scanned meshes [Pons-Moll et al., TOG 2017]
- Expensive and less widely applicable

• Optimization-based pose and shape from images [Dibra et al., 3DV 2016]
- Long computation time

• Learning-based pose and shape from images [Kanazawa et al., CVPR 2017]
- No supervision on human shapes
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Our Contributions

• First shape-aware human body reconstruction model

• Scalable multi-view learning framework

• A large synthetic dataset with ground-truth parameters
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Problem Definition
• Input: a person in multiple images
• # views: 1-4

• Output: the body parameters of the person
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Network Structure
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Network Structure

29



Image Feature Flow
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Human Parameter Flow
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Camera Parameter Flow
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Synthetic Data Generation

• CMU MoCap + Shape variation + cloth simulation + rendering
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Results
• Metric: 
• Body pose: Mean Per Joint Position Error
• Body shape: Hausdorff Distance

34

Our method has smaller errors even with single view input, and performs much 
better using multi view images.



Qualitative Comparison
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Our method has better shape recovery in non-standard human shape input.



Qualitative Comparison

36
Our method has better shape recovery in non-standard human shape input.



Qualitative Comparison

37Our method has better pose recovery with multi-view images.



Summary

• First shape-aware human estimation model

• Multi-view iterative network

• Can accept any number of views as input

• Synthetic data generation pipeline

• Enable direct shape supervision

• Performance improvement on human reconstruction

• Better pose estimation using multi-view input

• Better shape estimation on non-standard human body
38



Outline

• Background

• Reconstruction
• Shape-aware human body recovery using multi-view images

• Differentiable cloth simulation for material optimization

• Joint estimation of human and garment from video

• Synthesis
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• Dynamics-Inspired garment draping prediction
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Junbang Liang, Ming C. Lin, Vladlen Koltun. Differentiable Cloth Simulation for Inverse Problems. NeurIPS 2019



Motivation

• Faithful estimation of garment materials.

• Works as a layer in deep neural network

• Enables gradient-based optimization, learning and control

40



Limitations with State-of-the-Art

• Differentiable rigid body simulation [Degrave et al., Frontiers in 
Neurorobotics 2019]

- Formulation not scalable to high dimensionality

• Learning-based physics [Li et al., ICLR 2018]
- Unable to guarantee physical correctness
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Our Contributions

• The first differentiable cloth simulation

• Dynamic collision detection to reduce collision dimensionality

• Gradient computation of collision response using implicit differentiation

• Optimized backpropagation using QR decomposition
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Collision Response

43

z: optimized vertex positions
W: weight matrix
G, h: constraint matrices



Gradients of Collision Response
• Karush–Kuhn–Tucker condition:

• Implicit differentiation:

44

z: current vertex positions
W: weight matrix
G, h: constraint matrices
𝜆: Augmented Lagrangian multiplier
D(): diagonalize operator
*: optimization output



Gradients of Collision Response
• Solution:

where dz and dλ is provided by the linear system:

45

z: current vertex positions
W: weight matrix
G, h: constraint matrices
𝜆: Augmented Lagrangian multiplier
D(): diagonalize operator
*: optimization output
ℒ: loss function



Acceleration of Gradient Computation

• Explicit solution of the linear equation:

where Q and R is obtained from:

• Theoretical speedup: O((n+m)3)     à O(nm2)
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z: current vertex positions
W: weight matrix
G, h: constraint matrices
𝜆: Augmented Lagrangian multiplier
D(): diagonalize operator
*: optimization output
ℒ: loss function
n: number of DOFs
m: number of constraints



Results: Performance Speedup
• Scene setting: A large piece of cloth crumpled inside a pyramid.

47

The runtime performance of gradient computation is significantly improved by 
up to two orders of magnitude. 



Application: Material Estimation
• Scene setting: A piece of cloth hanging under gravity and a constant 

wind force.
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Our method achieves the best runtime performance and the smallest overall error.



Application: Motion Control
• Scene setting: A piece of cloth being lifted and dropped to a basket.
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Our method achieves the best performance with a much smaller 
number of simulation samples.



Visualization
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Summary

• First differentiable cloth simulation

• Applicable to optimization tasks (e.g. fabric material estimation)

• Embedded in neural networks for learning and control

• Fast backpropagation for collision response
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Outline
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Junbang Liang, Ming C. Lin. Fabric Material Estimation from Video Using Multi-Scale Geometric Auto-Encoder. ICCV 2021 submission



Motivation

• User-friendly recovery of dressed garments.

• Real-to-virtual garment cloning

• Geometry + material

• Ability to account for different topologies

53



Limitations with State-of-the-Art

• Garment reconstruction from images [Alldieck et al., ICCV 2019]
- Heavy human assistance
- Simple topology

• Cloth material recovery from videos [Yang et al., ICCV 2017]
- Simplified input with fixed scenarios
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Key Idea
• Use temporal garment geometry features to infer the fabric material
• Use an auto-encoder to model garment geometry
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Key Idea
• Use temporal garment geometry features to infer the fabric material
• Use an auto-encoder to model garment geometry
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Garment
Latent Code

EstimationAbstraction



Our Contribution

• The first end-to-end neural network for fabric material recovery of 

dressed garments from one single RGB video.

• A two-level auto-encoder for garments

• The first parametric garment model that can account for arbitrary topologies 

• Joint estimation of human body and apparels

• A closed-loop structure for multi-tasking

• Garment features for material classification 
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System Outline
• Per-frame estimation of human and cloth
• Temporal information for material prediction
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System Outline
• Per-frame estimation of human and cloth
• Temporal information for material prediction
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Garment Auto-Encoder
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Garment Auto-Encoder

• Two-level auto-encoder for point clouds

61

Global auto-encoder Local auto-encoder



Global Auto-Encoder
• PointNet [Qi et al. 2016] + AtlasNet [Deprelle et al. 2019]
• Low frequency shape
• Conditioned on human body parameters
• Representative points (patch centers) proposed by the network
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Local Patch Extraction

• K-Nearest-Neighbor
• Simpler geometry: easy to auto-encode
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Local Auto-Encoder

• PointNet + AtlasNet
• Local shape distribution
• Conditioned on Patch Center and the global latent code
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Mesh Reconstruction

• Screen Poisson
• Vertex-filtering + wrinkle optimization
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Key Improvements

• Two-level decoder

• Disentangle global shape and local deformation

• Separate patches

• Avoid interwound or vanished patches

• Human body parameters prior

• Higher accuracy for global shape reconstruction
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Appearance Estimation
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Network Structure: Overview

68θ: Human body parameters
z: Garment latent code



Body and Garment Estimation
• Input: Single frame image feature
• Output: human parameter θ, garment latent z
• Garment Estimation: Prediction-correction blocks

69



Network Structure: Material Classification
• Input: feature sequence of image and garment latent code
• Output: material class
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Simulated Data Samples
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Results: Garment Material Estimation
• Baseline: single frame input, image-only input
• Metrics: classification accuracy

Our method achieves the highest accuracy with the help of garment features 
and temporal information 72



Result: User Study
• Test scenario: synthetic scenes
• Metric: similarity scores (0-distint, 5-similar, 10-identical)

73Our method recovers the real-world materials with only minor differences
Scores: 6.6±2.0             8.5±1.5               6.7±2.5             5.7±2.6              7.9±1.8



Qualitative Results: Garment Reconstruction

74Our method achieves similar visual appearance without any prior knowledge



Per-Frame Prediction Visualization
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Application: Material Cloning
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Application: Avatar Cloning
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Application: Virtual Try-On
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Summary

• First end-to-end model for joint estimation of body and garment

• Two-level auto-encoder for garment geometry

• Supports arbitrary topology

• No prior knowledge on garment style

• Closed-loop refinement connection for better prediction

• Usage of garment features boosts the accuracy of material estimation

• Applicable to material/garment/avatar transfer
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Outline

• Background

• Reconstruction
• Shape-aware human body recovery using multi-view images

• Differentiable cloth simulation for material optimization
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• Synthesis
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Junbang Liang, Ming C. Lin. Time-Domain Parallelization for Accelerating Cloth Simulation. Symposium on Computer Animation, 2018



Motivation

• Real-time cloth simulation system

• Low-latency, real-time try-on

• Rapid apparel prototyping
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Limitations with State-of-the-Art

• Spatial domain parallelization [Thomaszewski and Blochinger, EG 
2006]

- High communication overhead (low scalability)
- Fixed mesh structure

• GPU acceleration [Tang et al., CGF 2016]
- Unscalable
- Fixed mesh structure

• Time parallel time integration for continuous energy space PDE 
[Emmett and Minion, CAMCS 2012]

- Inapplicable to collision-involved discontinuous problem
82



Key Contributions

• First time-domain parallelization for cloth simulation

• Two-level mesh representation

• Enables time domain parallelization

• Adaptive domain partitioning

• Workload balancing

• Iterative detail recovery at partition points

• Smoothed results
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System Pipeline

• Input:
• initial mesh      
• up-sampling function 
• simulation function

• Output: high resolution mesh 
sequence

Notations:
si: partition point of the i-th processor
N: number of simulation steps
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System Pipeline

1. Run low-resolution simulation

Notations:
si: partition point of the i-th processor
N: number of simulation steps
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System Pipeline

1. Run low-resolution simulation
2. Determine the partition point
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System Pipeline

1. Run low-resolution simulation
2. Determine the partition points
3. Up-sample the mesh to high-

resolution
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System Pipeline

1. Run low-resolution simulation
2. Determine the partition points
3. Up-sample the mesh to high-

resolution
4. Iteratively recovers the detail

88

Notations:
si: partition point of the i-th processor
N: number of simulation steps



System Pipeline

1. Run low-resolution simulation
2. Determine the partition points
3. Up-sample the mesh to high-

resolution
4. Iteratively recovers the detail
5. Run high-resolution in parallel

89

Notations:
si: partition point of the i-th processor
N: number of simulation steps



Adaptive Temporal Partitioning
• Estimate the coarse-to-fine ratio K on the fly
• n is the partition point if:

(est. time on Processor 0) = (est. time on Processor 1)

• as 

Notations:
s -1: estimated partition point of the last processor
N : number of simulation steps
p : number of processors
K : estimated coarse-to-fine ratio (= High-res time / low-res time) 90



Iterative Detail Recovery
• Loss of high frequency information in low resolution meshes
• Use simulation itself to recover the missing details
• Record the ‘change of the state’ in each step of the low-resolution 

simulation

Notations:
u(): user-specified up-sampling function
XC: low resolution mesh
XF: high resolution mesh
f(): simulation function
si: partition point of the i-th processor 91



Results: Scalability Test

92
A nearly linear scalability is achieved



Comparison with Previous Work
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Our method achieves linear scalability in small systems and is 
50% more efficient than previous distributed methods



Demos
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• (add 10 secs of video showcase)



Summary

• First temporal-domain parallelization for cloth simulation

• Adaptive domain partitioning for workload balance

• Nearly linear scalability up to the theoretical bound

• Iterative detail recovery algorithm for smooth transitioning

• High-fidelity visual results comparable to sequential simulation
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Outline
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Junbang Liang, Ming C. Lin, Javier Romero. Semi-Supervised Learning of Physics-Enforced Garment Prediction. NeurIPS 2021 submission



Motivation

• Fast and realistic visual rendering.

• Real-time feedback bypassing the simulation

• Accuracy: predictions as realistic as simulated ones
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Limitations with State-of-the-Art

• Learning-based garment draping [Patel et al., CVPR 2020]

- Unable to cover all body shapes

- Cannot deal with loose clothing

- Overly smoothed results

98



Our Contribution

• A novel encoder/decoder network that effectively captures global and 

local features from the input body.

• Novel loss functions that encode geometric, physical, design, and 

tailoring constraints.

• A semi-supervised framework to integrate dynamical constraints into 

the deep learning model.
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Network Structure
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Encoder

101

• 1D CNN
• 91.24% vertices have neighbors also adjacent in index space



Decoder

102

• Multi-resolution Graph Convolution Network (GCN)
• Learnable adjacency matrix values

• MLP: spectral decoder
• Mid-frequency signal refinement



Loss Functions
• Direction: penetration prevention

• Edge: garment stretchable length

• Face deformation: garment potential energy

• Laplacian difference: first-order smoothness/shape

• Spectral difference: spectral component density

103

R: ReLU
n: vertex normal
c: body correspondence
d: garment displacement
x: network prediction
u, v: edge vertices
E: edge set
f: face of the mesh
M: garment mesh
F: deformation gradient
Lk: Mesh Laplacian on the k-th level

resolution
V: spectral domain decomposition

matrix



Semi-Supervision
• Motivation
• Adaptation to new materials, body poses without simulation data
• Online refinement for better results

• Intersection removal and drape smoothing
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Physics-Enforced Optimization

• Apply losses based on garment potential energy and penetration:
• Potential energy:

• Gravity

• Stretching energy

• Bending energy

• Penetration:

105

v: mesh vertex
M: garment mesh
g: gravity
x: network prediction
S: stretching energy
f: mesh face
B: bending energy
e: mesh edge
R: ReLU
d: signed distance
Mbody: body mesh
𝛿: garment thickness



Results: Direct Prediction
• Test metrics: 
• Mean Euclidean (ME)
• Different loss components

• Laplacian (l), edge (e), spectral (s), deformation (d)
• Penetration ratio p

106

Our method has 44%-98% error reduction compared to state-of-the-art.



Results Visualization: Normal Body
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Results: Semi-Supervision
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Summary

• Novel network and loss functions for addressing physical constraints

• Better detailed wrinkle formations

• Much fewer penetrations

• Larger coverage on body shapes

• Semi-supervision method for adaptation to new distribution

• Applicable to fit different fabric materials and frontal prints
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Thesis Statement

• Dynamic constraints can be effectively enforced in human body 

estimation, garment material and geometry reconstruction, 

simulation acceleration, and draping prediction for virtual try-

on systems, by coupling machine learning and optimization 

methods with cloth simulation.
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Conclusion

• Shape-aware human body recovery using multi-view images

• Multi-view multi-stage structure for higher accuracy

• Synthetic dataset for large scale supervision
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Conclusion

• Differentiable cloth simulation for material optimization

• Implicit differentiation and QR decomposition for faster backpropagation
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Conclusion

• Joint estimation of human and garment from video

• Two-level auto-encoder for representing arbitrary garments

• Closed-loop structure and garment features for higher accuracies
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Conclusion

• Time-domain parallelization for accelerating cloth simulation

• Adaptive workload distribution for best scalability possible

• Iterative refinement to ensure temporal consistency
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Conclusion

• Dynamics-Inspired garment draping prediction

• Physics-inspired network structure and loss functions

• Semi-supervision pipeline for quick adaptation to new distributions

116

Thesis Statement:

Dynamic constraints can be effectively enforced in human body 

estimation, garment material and geometry reconstruction, 

simulation acceleration, and draping prediction for virtual try-on 

systems, by coupling machine learning and optimization methods 

with cloth simulation.



Limitations and Future Work
• Training data

• Better details in hair, skin, and lighting
• Self (semi-) supervision?

• Networks and learning algorithms
• A network dedicated to fit tasks related to garments?

• Parametric garment models
• Multi-layer cloth, accessories, multi-fold shapes
• UV coordinates for sewing patterns

• Human body representation
• Parameterization for deformable bodies

• Visual rendering and synthesis
• Spatial + temporal parallelization on GPU systems

• Generalization and robustness of draping networks
• Support of multiple poses, shapes, and temporal motions
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