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1 Introduction
E-Commerce has been growing at a rapid pace in recent years. People are now more likely to shop online than to go
to physical stores. Digital try-on systems, as one important way to improve the user experience and popularize online
garment shopping, has drawn attention of many researchers [GCH+12]. However, the technology is still far from being
practical and easy-to-use to replace physical try-on, mostly due to the gap in modeling and in demonstrating garment
fitting between the digital and the real worlds.

There are several reasons why customers still prefer physical try-on. First, consumers are unsure if what they buy
online will fit their bodies well. Although there exist general sizing systems for individuals, its lack of consistency and
standardization across different brands and garment materials can often make it difficult to sizing the clothes, especially
for those with non-standard body shapes and proportion. Accurate estimation of human body shapes is the key to make
digital try-on work. Second, the fabric material is usually one of the key considerations when shopping for clothes.
Different fabric materials affect how the garments look and fit on a body, how customers would wear it, and whether
or not they would buy it. However, the correspondences between the actual material and its digital representation are
not well understood, not to mention an accurate material estimation and digital cloning from the real-world examples.

Visual effects from the customers’ view is as critical as other factors. There are two common presentations of
garments: 2D image-based and 3D mesh with photo-realistic rendering. They have different advantages and drawbacks,
but both need a large garment database for support. While creating a 3D garment model takes considerable labor, 2D
images often suffer from the lack of variation and it is much more difficult to make customized changes. In either case,
the try-on system would need a user-friendly design and manipulation backend to meet the customer’s needs. Last,
but not least, a fast and vivid animation of the garments in motion, along with the body movement, can considerably
improve the user experience. Although it is not as critical as other factors, realistic visual rendering could effectively
reduce the perceptual gap between the real-world and the virtual garments for online shopping.

Although previous methods have made some progresses on these under-constrained problems, learning-based ap-
proaches have shown tremendous potential in making notable impact. We propose to address the key open research
issues above by adopting machine learning and optimization techniques. These include:

• Fast and realistic visual rendering of animated try-on results;

• Accurate reconstruction of human shapes and sizes through consumer devices;

• Faithful estimation of garment materials via learning and optimization; and

• User-friendly recovery of garment geometry for rapid prototyping.
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1.1 Thesis Statement
Dynamic constraints can be effectively enforced in simulation acceleration, human body estimation, and garment re-
construction for virtual try-on systems, by coupling machine learning and optimization methods with cloth simulation.

2 Related Work
In this section, we discuss previous works on cloth simulation and acceleration, hidden parameter estimation, and
differentiable physics.

2.1 Cloth Simulation
Simulation of cloth and deformable bodies has been extensively studied for a wide range of applications in different
areas, from computer graphics, CAD/CAM, robotics and automation, to textile engineering. Due to their ability to take
large time steps, implicit or semi-implicit methods [GHF+07, VMTF09, Zel05, BWK03] have been widely adopted
after the seminal work by Baraff and Witkin [BW98]. However, most of these works focus on the serial simulation
improvement and their runtime performances can be slow.

2.1.1 Parallel Cloth Simulation

Parallelization is a popular, practical way to achieve performance improvement. Several parallelization techniques for
cloth simulation have been proposed. [WY16, FTP16] proposed GPU-based simulation methods for elastic bodies.
[MRB+99, RRZ00, KB04, TB06, ZFV02] proposed different types of spatial parallelization but they all suffer from
severe sub-linear scalability due to large communication overhead. [NKT15] improved the work from [AVGT12] us-
ing Asynchronous Contact Mechanics and reduced the communication by proposing a locality-aware task assignment,
which first scaled more than 16 cores. [TWT+16] implemented a GPU-based simulation pipeline. Their method has
achieved an impressive speedup of 58 times.

2.2 Human Body Reconstruction
Human body recovery has gained substantial interest due to its importance in a large variety of applications, such as
virtual environments, computer animation, and garment modeling. However, the problem itself is naturally ambiguous,
given limited input and occlusion. Recently a number of methods have been proposed to improve the 3D pose esti-
mation with calibrated multi-view input, either using LSTM [TGM+17, NCV+19], auto-encoder [RSF18, TGHC18]
or heat map refinement [PZDD17b, TTAR18]. They mainly focus on 3D joint positions without parameterization,
thus not able to articulate and animate. Choy et al. [CXG+16] proposed an LSTM-based shape recovery network
for general objects. Varol et al. [VCR+18] proposed a 2-step estimation on human pose and shape. However, both
methods are largely limited by the resolution due to the voxel representation. Kanazawa et al. [KBJM18] used an
iterative correction framework and regularized the model using a learned discriminator. Since they do not employ any
supervision other than joint positions, the shape estimation can be inaccurate, especially, when the person is relatively
over-weighted.

2.3 Use of Synthetic Dataset
Since it is often time- and labor-intensive to gather a dataset large enough for training a deep neural network, an
increasing amount of attention is drawn to synthetic dataset generation. Recent studies [CWL+16, YLL17] have shown
that using a synthetic dataset, if sufficiently close to the real-world data, is helpful in training neural networks for real
tasks. Varol et al. [VRM+17] built up a dataset (SURREAL) which contains human motion sequences with clothing
using the SMPL model and CMU MoCap data [CMU03]. Recent works [SPMF19, AMB+19] also generate synthetic
data to assist training, but their datasets have only very limited variance on pose, shape, and textures to prevent from
overfitting.
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2.4 Differentiable Physics
With recent advances in deep learning, there has been increasing interest in differentiable physics simulation, which can
be combined with other learning methods to provide physically consistent predictions. Belbute-Peres et al. [dABSA+18]
and Degrave et al. [DHDw19] proposed rigid body simulators using a static formulation of the linear complementarity
problem (LCP) [Cot09, Cli02]. Toussaint et al. [TAST18] developed a robot reasoning system that can achieve user-
defined tasks and is based on differentiable primitives. Hu et al. [HLS+19] implemented a differentiable simulator
for soft robots based on the Material Point Method (MPM). They store the object data at every simulation step so
that the gradient can be computed out of the box. Schenck and Fox [SF18] embedded particle-based fluid dynamics
into convolutional neural networks, with precomputed signed distance functions for collision handling. They solved
or avoided collisions by assuming special object shapes, transferring to an Eulerian grid, or solving the corresponding
collision constraint equation.

None of these methods can be applied to cloth simulation. First, cloth is a 2D surface in a 3D world; thus methods
that use an Eulerian grid to compute material density, such as MPM [HLS+19], are not applicable. Second, the
collision constraints in cloth simulation are more dynamic and complex given the high number of degrees of freedom;
thus constructing a static dense LCP for the entire system [dABSA+18, DHDw19] or constructing the overall state
transition graph [TAST18] is inefficient and usually impossible for cloth of common resolution, since contact can
happen for every edge-edge or vertex-face pair. Lastly, the shape of cloth changes constantly so self-collision cannot
be handled by precomputed signed distance functions [SF18].

2.5 Garment Geometry Modeling and Estimation
Garment model generation has attracted attention these days due to its importance in both real-world and virtual
garment design application. Although professional tools, such as Marvelous Designer [2018], can help design high-
quality garment models, it may take an excessive amount of time to use it. Several studies have addressed this issue
by introducing an automatic generation pipeline to improve the efficiency. Assuming different priors, most previous
studies lie in three categories: sketch-based, image-based, and depth-based.
Sketch-based methods. Generating garment models with sketches is one of the most popular ways. This approach
takes one or more sketches as input and generates the garment model. Turquin et al. [TCH07] and Decaudin et
al. [DJW+06] developed some of the early work in this area. They used grid and geometric methods to generate
garment models with sketches. However, the garment models generated by these methods have limited visual quality.
Later, Robson et al. [RMSC11] proposed a context-aware method to make the generated garment model more realistic
based on a set of observations on key factors which could affect the shapes of garments. These models are, however,
fixed to a given body shape. Jung et al. [JHR+15] proposed a method to model 3D developable surfaces with a multi-
view sketch input. Recently, Huang et al. [HYZ16] proposed a realistic 3D garment generation algorithm based on
front and back image sketches, but it cannot retarget the generated garments to other body shapes easily. Wang et
al. [WCPM18] proposed an algorithm that can achieve retargeting conveniently, but is limited to very few topology,
namely T-shirts or skirts. In addition, a common limitation using the sketch-based algorithm is that they require domain
knowledge on garment sketching.
Image-based or depth-based methods. Other information such as images can also be used to generate a garment
model. Bradley et al. [BPS+08] researched early on markerless image-based garment modeling using multi-view
images. Later, Zhou et al. [ZCF+13] proposed a single-view image approach. In their work, a human shape was
estimated from the image and the garment model was reconstructed with the garment outline. Jeong et al. [JHK15]
created the garment model with a single photograph by detecting the landmark points of the garment. Yang [YPA+18]
made a full use of garment and human body databases to generate the garment models from a single–view image.
Daněřek et al. ’s [DDÖ+17] method can estimate the 3D garment shape from a single image using deep neural net-
works. Tex2Shape [APMTM19] is an image-to-image translation model for detailed full-body geometry reconstruc-
tion. MGN [BTTPM19] predicts body shape and clothing, layered on top of the SMPL [LMR+15] model from a few
(typically 1 - 8) frames of a video. Depth information can also be useful. Chen et al. [CZL+15] proposed a method
to generate garment models given an RGBD sequence of a worn garment. However, these methods require photos or
depth images from a real garment, which means they cannot generate a garment model from size parameters only.
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Figure 1: Performance scaling result with large low-res time step. A nearly linear scalability is achieved.

Table 1: Results on a higher-resolution mesh. We run our system on meshes of higher resolution. Values in the table
are the corresponding speedup of 128-core compared to single-core running time.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Original size speedup 74.1 75.0 102 116 96.4 92.3 93.8
4x large size speedup 99.6 109 178 119 103 101 108

3 Research Summary
In this section, we discuss our work on cloth simulation and inverse problem. First, we propose an algorithm to
parallelize cloth simulation, which divides the workload in time domain that minimizes the communication overhead
(Sec. 3.1). Next, we propose a scalable neural network framework to reconstruct the 3D mesh of a human body from
multi-view images and show that the learning benefits from the synthetic dataset generated from cloth simulation since
it has good flexibility of variable control and can provide ground-truth for validation (Sec. 3.2). We then propose a
differentiable cloth simulator that can be embedded as a layer in deep neural networks. We demonstrate the potential of
differentiable cloth simulation in a number of application scenarios, such as physical parameter estimation and motion
control of cloth (Sec. 3.3). Finally, we propose a pipeline for end-to-end learning of human appearance as a whole,
including body parameters, garment geometry, and its material (Sec. 3.4).

3.1 Time-Domain Parallelization for Accelerating Cloth Simulation
Significant progress has been achieved in visual simulation of cloth over the past decades [GHF+07, ZY01, BFA02,
BW98]. Numerous algorithms have been proposed that achieve high accuracy and robustness for various 3D graphics
applications, though real-time simulation remains illusive for complex simulation scenarios. Several parallelization
techniques for cloth simulation have been proposed. [MRB+99, RRZ00, KB04, TB06, ZFV02] proposed different
types of spatial parallelization but they all suffer from severe sub-linear scalability due to large communication over-
head.

We propose a novel method that divides the workload in time domain that minimizes the communication overhead,
thereby achieving much better scalability and higher performance gain over previous methods. The key challenge in
time-domain parallelization is to obtain or approximate the simulation states before the time-consuming simulation
begins. We use a two-level mesh representation to address this time-dependency issue. Observing that a coarse-level
mesh can be simulated at a much higher speed, our method runs a lower-resolution simulation using coarser meshes
to approximate the state at each time step. After an appropriate remeshing process, the higher-resolution simulations
using finer meshes can be run in parallel. To further refine the simulation results, we propose a practical technique to
smooth the state transition from the low-resolution to high-resolution simulations. To recover the lost states, we make
use of the coarse-level mesh and run several ‘static’ simulation steps before the high-resolution simulation starts.

We conduct experiments on various simulation scenarios to test the scalability of our method. As indicated in
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Figure 2: Small- and large-scale parallelization comparison. Our method (in blue solid line) achieves a linear speedup
at small scale, while others are limited by the communication overhead due to spatial domain partitioning. Our method
also achieves about 50% higher efficiency than [NKT15] at the large scale using dynamic workload balancing.

Fig. 1, our method achieves a good scalability with an increasing number of processors. The reason of the super-linear
speedup in the ‘Sphere’ scene is that it contains rapidly changing contacts with obstacles. When the cloth is free from
contact after the sphere passes through, the remeshing algorithm of ARCSim failed to simplify the mesh effectively,
spending an unnecessarily large amount of time simulating simple flat cloth. However, due to the nature of our two-
level structure, we maintain a reasonably small number of mesh elements while preserving the quality, and therefore
outperform the serial approach significantly. We tested our method on a higher-resolution mesh and observed an even
better speedup (Table 1) due to the same reason.

We also compare the performance of our method against other CPU parallelization techniques. Fig. 2(a) shows that
in smaller-scale systems (less than 16 cores), our method can maintain a linear speedup with respect to the single-core
system, scaling better compared to previous CPU-based methods using spatial-domain partitioning, e.g. 11x over 16
cores by [ZFV04]. For larger-scale systems (Fig. 2(b)), we achieved about 50% more efficiency than previous methods
such as [NKT15]. In these methods, the processors need to send the information to each other, typically several times,
when solving the linear system, resulting in large communication overhead and limited scalability. In contrast, our
method only needs to share the states from low-resolution simulations once. Therefore, our method can achieve greater
scalability and efficiency in comparison.

3.2 Shape-Aware Human Pose and Shape Reconstruction Using Multi-View Images
Human body reconstruction, consisting of pose and shape estimation, has been widely studied in a variety of ar-
eas, including digital surveillance, computer animation, special effects, and virtual/augmented environments. Yet, it
remains a challenging partly because the problem itself is naturally ambiguous, given limited input and occlusion.
Previous works reduce this ambiguity using different assumptions and input data. They consist of four main cate-
gories: pose from images [PZDD17a, TMNSF17, TRA17, ZHS+17], pose and shape from images under tight cloth-
ing [CKC10, DJÖ+16, HAR+10, JTST10], scanned meshes [PPHB17, HSR+09, WPB+14], and images with loose
clothing [BB08, BKL+16, LRK+17]. One of the most important metrics used in these methods is the difference be-
tween the original and the estimated silhouette. As a result, these methods cannot be directly applied to images where
the human wears loose garments, e.g. long coat, evening gown. For works that handle loose clothing, they either
relaxed the loss on clothed regions, or incorporating a silhouette energy term on SMPLify [BKL+16], which can be
easily degraded when the skin detector is not helpful, and has introduced errors inherently from the optimization.

To tackle this problem, we propose a learning-based shape-aware human body mesh reconstruction using SMPL
parameters for both pose and shape estimation that is supervised directly on shape parameters. A scalable, end-to-
end, multi-view multi-stage learning framework is developed to account for the ambiguity of the 3D human body
(geometry) reconstruction problem from 2D images, achieving improved estimation results. Our proposed framework
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(a) The input image. (b) Our result. (c) HMR.

Figure 3: Prediction results compared to HMR. Our model can better capture the shape of the human body. The
recovered legs and chest are closer to the person in the image.

uses a recurrent structure, making it a universal model applicable to the input of any number of views. At the same time,
it couples the shareable information across different views so that the human body pose and shape can be optimized
using image features from all views. Since real-world datasets suffer from limited foreground/background textures and
ground-truth pose and shape parameters, we make use of synthetic data as additional training samples so that the model
can be trained to be more shape-aware. Compared to previous learning-based methods, our model is more shape-aware
due to the extra supervision from our synthetic dataset.

We tested our model on datasets using multi-view images to demonstrate the strength of our framework. We use
Mean Per Joint Position Error (MPJPE) of the 14 joints of the body. As shown in Table 2, under the same training
condition, our model in single-view has similar, if not better, results in all experiments. Meanwhile, our model in
multi-view achieves much higher accuracy. The reason why the accuracy drops after jointly-trained with synthetic data
is that the training data and the test data are not on the same distribution.

Method
MPJPE

w/ syn. training
MPJPE

w/o syn. training
HMR [KBJM18] 60.14 58.1

Ours (single) 58.55 59.09
Ours (multi) 45.13 44.4

Table 2: Comparison results on Human3.6M using MPJPE. Smaller errors implies higher accuracy.

For shape estimation, other than MPJPE for joint accuracy, we use the Hausdorff distance between two meshes to
capture the shape difference to the ground-truth. Our single-view results are not carefully tuned for the experiment. We
directly used single-view input for our multi-view-trained model, so its accuracy may not be as good as the baseline.
But as shown in Table 3, our model with multi-view input achieves the smallest error values, when compared to two
other baselines.

Method
MPJPE/HD

w/ syn. training
MPJPE/HD

w/o syn. training
HMR 42/83 89/208

Ours (single) 44/65 102/283
Ours (multi) 27/53 84/273

Table 3: Comparison results on our synthetic dataset in MPJPE/Hausdorff Distance(HD). Better results have lower
values.

After joint-training with synthetic data, all models perform better in shape estimation, while maintaining similar
results using other metrics (Table 2), i.e. they do not overfit. The joint errors of the HMR [KBJM18] are fairly good,
so they can still recognize the synthesized human in the image. However, a larger Hausdorff distance indicates that
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Figure 4: Example frame from the ablation study. A piece of cloth is crumpled inside a square pyramid, so as to
generate a large number of collisions.

they lose precision on the shape recovery. Adding our synthetic datasets for training can effectively address this issue
and thereby provide better shape estimation. We achieved a much smaller Hausdorff distance (with syn. training) even
only using single view. This is because our refinement framework is effectively deeper, aiming at not only the pose
but also the shape estimation, which is much more challenging than the pose-only estimation. With the same method,
multi-view inputs can further improve the accuracy of shape recovery compared to results using only one single-view
image.

We also tested our model on other online images, where no such measurement can be done. As shown in Fig. 3,
HMR [KBJM18] can predict the body pose but fails on inferring the person’s shape. On the contrary, our model not
only refines the relative leg orientations but also largely respects and recovers the original shape of the body. More
examples are shown in our supplemental document and video.

3.3 Differentiable Cloth Simulation for Inverse Problems
Differentiable physics simulation is a powerful family of techniques that applies gradient-based methods to learning
and control of physical systems [dABSA+18, DHDw19, TAST18, HLS+19, SF18]. It can enable optimization for
control, and can also be integrated into neural network frameworks for performing complex tasks. Our work focuses
on cloth simulation, which relates to applications in robotics, computer vision, and computer graphics [CSM+11,
MvdBF+12, BXBF13, YLL17, PPHB17, LCT18, GCS+19]. Our goal is to enable differentiable cloth simulation,
which can provide a unified approach to a variety of inverse problems that involve cloth.

Differentiable cloth simulation is challenging due to a number of factors, which include the high dimensionality of
cloth (as compared for example to rigid bodies [dABSA+18]) and the need to handle contacts and collision. For exam-
ple, a simple 16×16 grid-based cloth mesh has 289 vertices, 867 variables, and 512 faces when triangulated. Typical
resolutions for garments would be at least many thousands, if not millions, of vertices and faces. Previous work that
tackled differentiable simulation with collisions set up a static linear solver to account for all constraints [dABSA+18].
In our simple example with cloth, the number of pairwise constraints would be at least 289×512 = 140K for vertex-
face collisions alone, which renders existing methods impractical even for this simple system. Even if a dynamic solver
is applied upon collision, solving a dense linear system with such high dimensionality makes the gradient computation
infeasible.

In this work, we propose a differentiable cloth simulation algorithm that overcomes the above difficulties. In
general, we follow the computation flow of the common approach to cloth simulation: discretization using the finite
element method [EKS03], integration using implicit Euler [BW98], and collision response on impact zones [NSO12,
HVTG08].

Collision handling in our implementation is based on impact zone optimization [NSO12]. It finds all colliding
instances using continuous collision detection and sets up the constraints for all collisions. In order to introduce
minimum change to the original mesh state, we develop a Quadratic Programming (QP) problem to solve for the
constraints. Since the signed distance function is linear in x, the optimization takes a quadratic form.

We use implicit differentiation in the linear solve and the optimization in order to compute the gradient with respect
to the input parameters. The discontinuity introduced by the collision response is negligible because the discontinuous
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Figure 5: Example frame from the motion control experiment: dropping cloth into a basket.

states constitute a zero-measure set. During the backpropagation in the optimization, the gradient values can be directly
computed after QR decomposition of the constraint matrix, which is much smaller than the original linear system and
is often of low rank. The intuition behind the QR decomposition is as follows. When perturbing the original point in
an optimization, the resulting displacement of the optimized output will be moving along the surface of the constraint,
which will become perpendicular to the normal when the perturbation is small. This approach reduces the gradient
computation to a linear system of a small upper triangular matrix (the R component of the decomposition), which
enables fast simulation and backpropagation.

Mesh
resolution

Baseline Ours Speedup
Matrix size Runtime (s) Matrix size Runtime (s) Matrix size Runtime

16x16 599± 76 0.33± 0.13 66 ± 26 0.013 ± 0.0019 8.9 25
32x32 1326± 23 1.2± 0.10 97 ± 24 0.011 ± 0.0023 13 112
64x64 2024± 274 4.6± 0.33 242 ± 47 0.072 ± 0.011 8.3 64

Table 4: Statistics of the backward propagation with and without our method for various mesh resolutions. We report
the average values in each cell with the corresponding standard deviations. By using our method, the runtime of
gradient computation is reduced by up to two orders of magnitude.

We conduct an ablation study to verify this estimate in practice. In order to clearly measure the timing difference,
we design a scenario with many collisions. We place a piece of cloth into an upside-down square pyramid, so that the
cloth is forced to fold, come into frequent contact with the pyramid, and self collide, as shown in Fig. 4.

We measure the running time of backpropagation in each quadratic optimization and also the running time of the
physics solver as a reference. With all other variables fixed, we compare to the baseline method where the gradients
are computed by directly solving the linear system from the implicit differentiation. Timings are listed in Tab. 4. In
this experiment, the backpropagation of the physics solve takes from 0.007s to 0.5s, which, together with the timings
of the baseline, implies that the collision handling step is the critical bottleneck when there are many collisions in the

Method Error (%) Samples

Point mass 111 –
PPO [LLN+18] 432 10,000
Ours 17 53
Ours+FC 39 108

Table 5: Motion control results. The table reports the smallest distance to the target position, normalized by the size
of the cloth, and the number of samples used during training. ‘Ours+FC’ means we added a simple fully-connected
network for control instead of optimizing the signals directly.
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scene. The results in Tab. 4 show that our proposed method can significantly decrease the matrix size required for
computation and thus the actual running time, resolving the bottleneck in backpropagation.

We further demonstrate the capability of our differentiable simulator by optimizing control parameters. The task is
to drop a piece of cloth into a basket, as shown in Fig. 5. Tab. 5 shows the performance of the different methods and
their sample complexity. The error shown in the table is the distance defined above normalized by the size of the cloth.
Our method achieves the best performance with a much lower number of simulation steps. The bottom of the basket in
our setting has the same size as the cloth, so a normalized error of less than 50%, as our methods achieve, implies that
the cloth is successfully dropped into the basket.

3.4 Vid2Avatar: Human Body Appearance Reconstruction from RGB Video (In Progress)
Recreating virtual human that is perceptually similar to the real human is an important and powerful technique that can
be applied in many virtual applications, such as virtual try-on. Although capturing human poses and shapes has been
extensively studied recently [LL19, KBJM18], approaches that estimate garment properties are very rare, partly due to
the difficulty of modeling garments as a whole in the parameter space. Existing approaches either learn the garment
model in each category [YFHWW16], or develop the garment based on the displacement from the body [APMTM19,
BTTPM19], both of which suffer from lack of various garment topologies. Moreover, physical material is also a
critical aspect when estimating the garment properties. Different materials can lead to very different garment motions
and human perceptions, even when their geometry structures are the same to start with. Previous work [YLL17] learn
cloth materials from a fixed and controlled scenario, which is not applicable to garment material captured from daily
human motion in video. While these issues are closely intertwined with each other, no previous work has addressed
them simultaneously.

Inspired from multi-tasking and iterative optimization techniques that are proven successful in other tasks, we
propose to jointly learn human body, cloth geometry, and cloth materials together in an end-to-end fashion. The main
challenges are:

1. A unified parametric representation for all types of clothing.

2. Information sharing between different tasks.

We first set up an auto-encoder for the cloth model. Since the model is designed not to assume fixed garment
topology, we choose to use point cloud as the underlying representation. Previous point cloud auto-encoders such as
AtlasNet [DGF+19] use MLPs to transform a 2D patch to a set of 3D points in the space. Their method performs well
in point cloud datasets that include rigid objects such as airplanes or chairs, since the deformations presented in those
objects are simple and regular. However, it cannot be directly applied to learn garment point clouds since garments
have much larger variance in point cloud distribution due to its dynamic nature. For example, a simple dress can create
different wrinkle structures under different external forces. As a result, one global auto-encoder cannot account for all
detail structure, resulting in smooth and blurry point clouds.

Inspired from PointNet++ [QYSG17] where it used a two-level encoder for segmentation tasks, we propose a
two-level auto-encoder for learning the latent space of the cloth. We first do a farthest point sampling to get the
representative points, which is a subset of the entire point cloud. We start from the center of mass so that the sampled
result is stable. Second, we group the other points by nearest neighbor to form a set of patches, each contains one
representative point. We then feed the representative point cloud and the patches to different PointNets to obtain the
global and local latent vectors. On the decoder side, we first use a global AtlasNet to recover the representative points.
Then we use each of the points as a condition to decode the patches accordingly, using a local AtlasNet. Finally, we
combine the patches and the representative points to get the full reconstructed point cloud.

The major differences between our method and an naive combination of PointNet++ and AtlasNet are: (a) we use a
two-level decoder structure, where the local decoder is conditioned on the global output, (b) we start the farthest point
sampling from the center of mass, which ensures stability of the sampled result, (c) our structure inherently separates
different patches of the cloth, avoiding interwound or vanished results as seen in AtlasNet, and (d) we condition the
global decoder on the human body parameters, which can help improve the accuracy of the reconstructed points.
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In this task, we used Chamfer Distance between two point clouds as the loss:

d(P,Q) =
1

|P|
∑
p∈P

min
q∈Q
‖p− q‖2 + 1

|Q|
∑
q∈Q

min
p∈P
‖q− p‖2 (1)

After convergence on the auto-encoder, we train a model to estimate human body and cloth geometry given one
single frame. We follow the network structure from the recent state-of-the-art [KBJM18] for the body estimation. For
the cloth geometry estimation, we take as input the ResNet50 features of the image, sharing with the body estimation,
and regress the latent parameters of the garment point cloud. We define the loss function using Chamfer distance for the
supervised learning as well, but we fix the parameters in the decoder for consistent training. There is also one additive
output for corrective values of the human body estimation from this branch, enabling bidirectional information sharing.

Lastly, we train the material parameters using temporal information given by the human body and the cloth geom-
etry. Since material parameters are less likely to have impact on the body and cloth estimation, we do not introduce the
same additive output here, as we do in the cloth estimation branch. In this task, we use TCN [BKK18] for temporal
information gathering and processing. Following previous work [YLL17], we discretize the material parameter space
into different categories according to their dynamics similarity, and treat the material estimation task as a classification
problem.

In order to train such a model, we need a large number of samples that contain ground truth human body pa-
rameters, garment meshes, and the corresponding material parameters, which are nearly impossible to capture in real
world. Therefore, we choose to create a large synthetic dataset that can control these variables and generate videos
with the corresponding ground truth data. We sample human motion sequences and shape parameters in the CMU
Mocap dataset [CMU03], collect different garment meshes online and register them onto the initial (T-Posed) body. By
simulating the garment movement with the recorded body motion, we obtain a set of different garment geometry under
different body motions, shapes, and garment materials. Finally, we render the sequence with random textures (both on
human and garment surface) and background lighting to generate the synthetic videos.

The steps to be completed for this work are:

• Train and evaluate the garment estimation model.

• Train and evaluate the material estimation model.

• Test the model in synthetic dataset and real-world videos to evaluate the generalizability of this approach.

4 Expected Contributions
In summary, my research mainly focuses on improving efficiency, scalability, and capability of cloth simulation, and
enabling accurate hidden parameter estimation by exploiting cloth simulation for supervised learning and gradient-
based feedback control. My contributions can be categorized as follows:

• Time-domain parallelized cloth simulation: We introduce a novel temporal-domain parallelization method
for practical cloth simulation such as rapid design prototyping. Taking the advantage of faster simulations on
coarser meshes, we parallelize the cloth simulation in time with accelerated computation and minimal commu-
nication overhead. We also proposed an iterative detail recovery algorithm to minimize the visual artifacts due
to the state transitioning from coarse to fine meshes. Our method outperforms existing CPU- and GPU-based
parallelization techniques on a diverse set of benchmarks. It offers high efficiency and nearly linear scalability
on large distributed systems, while maintaining high-fidelity visual simulation of the cloth. The scalability of
our method is dependent on the ratio of low- to high-resolution simulation time, the length of the simulation, and
persistence of contacts with obstacles. This work is already published and is avaiable at:

http://gamma.cs.unc.edu/TParallelCloth/

• Simulated data-assisted shape-aware human body estimation: We proposed a novel multi-view multi-stage
framework for pose and shape estimation. The framework is trained on datasets with at most 4 views but can
be naturally extended to an arbitrary number of views. Moreover, we introduced a physically-based synthetic
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data generation pipeline to enrich the training data, which is very helpful for shape estimation and regularization
of end effectors that traditional datasets do not capture. Experiments have shown that our trained model can
provide equally good pose estimation as state-of-the-art using single-view images, while providing considerable
improvement on pose estimation using multi-view inputs and a better shape estimation across all datasets. This
work is already published and is avaiable at:

https://gamma.umd.edu/researchdirections/virtualtryon/humanmultiview

• Differentiable cloth simulation for learning and control: We presented a differentiable cloth simulator that
can compute the analytical gradient of the simulation function with respect to the input parameters. We used
dynamic collision handling and explicitly derived its gradient. Implicit differentiation is used in computing gra-
dients of the linear solver and collision response. Experiments have demonstrated that our method accelerates
backpropagation by up to two orders of magnitude. We have demonstrated the potential of differentiable cloth
simulation in two application scenarios: material estimation and motion control. By making use of the gradients
from the physically-aware simulation, our method can optimize the unknown parameters faster and more accu-
rately than gradient-free baselines. Using differentiable simulation, we can learn the intrinsic properties of cloth
from observation. This work is already published and is avaiable at:

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth

• Joint estimation of human body, cloth geometry and material from videos: We propose a novel end-to-end
learning framework that jointly estimates the human body, cloth geometry, and cloth material. By training the
model in a multi-tasking manner, the accuracy of all tasks can be improved from each other. We are also the first
to estimate the cloth geometry and its material in videos of common human actions, which is useful in a wide
range of applications. Compared to previous optimization-based material estimation work, we have much faster
inference speed. Compared to previous garment estimation work, we can support arbitrary topologies because
of the generality of the garment representation. This work is still ongoing and is planned to submit to NeurIPS
2020.

5 Dissertation & Department Requirements Schedule

5.1 Current Progress
• Fall 2016

– Worked on learning-based cloth material recovery methods.

• Spring 2017

– Submitted “Learning-Based Cloth Material Recovery from Video” [YLL17] to International Conference
on Computer Vision 2017, accepted.

– Worked on time parallelization for cloth simulation.

• Summer 2017

– Interned at Google (New York City, NY).

• Fall 2017

– Continue to work on time parallelization for cloth simulation.

• Spring 2018

– Submitted “Time Domain Parallelization for Cloth Simulation” [LL18] to SIGGRAPH 2018, rejected.

– Submitted “Time Domain Parallelization for Cloth Simulation” [LL18] to Symposium on Computer Ani-
mation 2018, accepted.
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– Worked on Shape-aware multi-view human body estimation.

• Summer 2018

– Interned at Google (Sunnyvale, CA).

– Presented “Time Domain Parallelization for Cloth Simulation” [LL18] at Symposium on Computer Ani-
mation 2018.

• Fall 2018

– Submitted “Shape-Aware Human Pose and Shape Reconstruction Using Multi-View Images” [LL19] to
Conference on Computer Vision and Pattern Recognition 2019, rejected.

• Spring 2019

– Submitted “Shape-Aware Human Pose and Shape Reconstruction Using Multi-View Images” [LL19] to
International Conference on Computer Vision 2019, accepted.

– Worked on differentiable cloth simulation.

– Submitted “Differentiable Cloth Simulation for Inverse Problems” to Conference on Neural Information
Processing Systems 2019, accepted.

• Summer 2019

– Interned at Facebook Reality Lab (Sausalito, CA).

• Fall 2019

– Worked on generative model for garment geometry.

– Worked on differentiable simulation for coupling rigid body and cloth.

– Submitted “GAN based garment generation using sewing pattern image” to Conference on Computer Vi-
sion and Pattern Recognition 2020, rejected.

• Spring 2020

– Submitted “Scalable Differentiable Physics for Learning and Control” to International Conference on Ma-
chine Learning 2020.

– Worked on joint learning of human body, garment geometry and material from videos.

– Submitted “GAN based garment generation using sewing pattern image” to European Conference on Com-
puter Vision 2020.

5.2 Future Plans
• Spring 2020

– Submit the proposal and pass the Preliminary Examination.

– Submit the joint learning work to Conference on Neural Information Processing Systems 2020.

• Fall 2020

– Work on latent space learning of cloth simulation.

– Submit the latent learning work to Conference on Computer Vision and Pattern Recognition 2021.

• Spring 2021

– Work on Dissertation and prepare for Dissertation Defense.

– Defend Dissertation.
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