
Chapter 2: Shape-Aware Human Reconstruction Using Multi-View

Images

2.1 Introduction

In order to accurately reconstruct and synthesize garments in virtual try-on

systems, it is necessary to obtain a precise estimation of the 3D user body mesh first.

Human body reconstruction, including both pose and shape estimation, is an essen-

tial building block for realistic virtual try-on systems. Despite its importance in a

large number of applications, human body reconstruction still remains a challenging

and popular topic of interest. While direct 3D body scanning can provide excellent

and su�ciently accurate results, its adoption is somewhat limited by the required

specialized hardware. I propose a practical method that can estimate body pose and

shape directly from a small set of images (typically 3 to 4) taken at several di↵erent

view angles, which can be adopted in many applications, such as Virtual Try-On.

Compared to existing scanning-based reconstruction, my proposed approach is much

easier to use. Compared to previous image-based estimation methods, my method

o↵ers a higher degree of accuracy in shape estimation when the input human body

is not within a normal range of body-mass index (BMI) and/or when the body is
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wearing loose clothing. Furthermore, my framework is flexible in the number of

images used and this feature considerably extends its applicability.

In contrast to many existing methods, I use “multi-view” images as input,

referring to photos taken of the same person with similar poses from di↵erent view-

ing angles. They can be taken using specialized multi-view cameras, but it is not

necessary (Sec. 2.6.4). Single-view images often lack the necessary and complete

information to infer the pose and shape of a human body, due to the nature of

projection transformation. By obtaining information from multiple view angles, the

ambiguity from projection can be considerably reduced, and the body shape under

loose garments can also be more accurately reconstructed.

Previous work on pose and shape estimation of a human body (see Sec. 2.2)

mostly rely on optimization. One of the most important metrics used in these

methods is the di↵erence between the original and the estimated silhouette. As a

result, these methods cannot be directly applied to images where the human wears

loose garments, e.g. long coat, evening gown. The key insight of my method is as

follows. When estimating a person’s shape, how the human body interacts with the

cloth, e.g . how a t-shirt is shaped due to the push by the stomach or the chest,

provides more information than the silhouette of the person. So image features,

especially those on clothes, play an important role in the shape estimation. With

recent advances in deep learning, it is widely believed that the deep Convolutional

Neural Network (CNN) structure can e↵ectively capture these subtle visual details as

activation values. I propose a multi-view multi-stage network structure to e↵ectively

capture visual features on garments from di↵erent view angles to more accurately
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infer pose and shape information.

Given a limited number of images, I incorporate prior knowledge about the

human body shape to be reconstructed. Specifically, I propose to use the Skinned

Multi-Person Linear (SMPL) model [30], which uses Principal Component Analysis

(PCA) coe�cients to represent human body shapes and poses. In order to train

the model to accurately output the coe�cients for the SMPL model, a su�cient

amount of data containing ground-truth information is required. However, to the

best of my knowledge, no such dataset exists to provide multiple views of a loosely

clothed body with its ground-truth shape parameters (i.e. raw mesh). Previous

learning-based methods do not address the shape (geometry) recovery problem [31]

or only output one approximation close to the standard mean shape of the human

body [32], which is insu�cient when recovering human bodies with largely varying

shapes. Taking advantage of physically-based simulation, I design a system pipeline

to generate a large number of multi-view human motion sequences with di↵erent

poses, shapes, and clothes. By training on the synthetic dataset with ground-truth

shape data, my model is “shape-aware”, as it captures the statistical correlation

between visual features of garments and human body shapes. I demonstrate in the

experiments that the neural network trained using additional simulation data can

considerably enhance the accuracy of shape recovery.

To sum up, the key contributions of my work include:

• A learning-based shape-aware human body mesh reconstruction using SMPL

parameters for both pose and shape estimation that is supervised directly on
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shape parameters.

• A scalable, end-to-end, multi-view multi-stage learning framework to account

for the ambiguity of the 3D human body (geometry) reconstruction problem

from 2D images, achieving improved estimation results.

• A large simulated dataset, including clothed human bodies and the corre-

sponding ground-truth parameters, to enhance the reconstruction accuracy,

especially in shape estimation, where no ground-truth or supervision is pro-

vided in the real-world dataset.

• Accurate shape recovery under occlusion of garments by (a) providing the

corresponding supervision and (b) deepening the model using the multi-view

framework.

2.2 Related Work

In this section, I survey recent works on human body pose and shape estima-

tion, neural network techniques, and other related work that make use of synthetic

data.

2.2.1 Human Body Pose and Shape Recovering

Human body recovery has gained substantial interest due to its importance in

a large variety of applications, such as virtual environments, computer animation,

and garment modeling. Previous works reduce the ambiguity from occlusion using
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di↵erent assumptions and input data. They consist of four main categories: pose

from images, pose and shape from images under tight clothing, scanned meshes, and

images with loose clothing.

Pose From Images. Inferring 2D or 3D poses in images of one or more people is

a popular topic in Computer Vision and has been extensively studied [33, 34, 35,

36, 37]. I refer to a recent work, VNect by Mehta et al . [31] that is able to identify

human 3D poses from RGB images in real time using a CNN. By comparison, my

method estimates the pose and shape parameters at the same time, recovering the

entire human body mesh rather than only the skeleton.

Pose and Shape From Images under Tight Clothing. Previous work [38, 39,

40, 41, 42, 43] use the silhouette as the main feature or optimization function to

recover the shape parameters. As a result, these methods can only be used when

the person is wearing tight clothes, as shown in examples [44, 45]. By training on

images with humans under various garments both in real and synthetic data, my

method can learn to capture the underlying human pose and shape based on image

features.

Pose and Shape From Scanned Meshes. One major challenge of recovering

human body from scanned meshes is to remove the cloth mesh from the scanned

human body wearing clothes [22]. Hasler et al . [46] used an iterative approach. They

first apply a Laplacian deformation to the initial guess, before regularizing it based

on a statistical human model. Wuhrer et al . [47] used landmarks of the scanned

input throughout the key-frames of the sequences to optimize the body pose, while

recovering the shape based on the ‘interior distance’ that helps constrain the mesh
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to stay under the clothes, with temporal consistency from neighboring frames. Yang

et al . [48] applies a landmark tracking algorithm to prevent excessive human labor.

Zhang et al . [49] took more advantages of the temporal information to detect the

skin and cloth region. As mentioned before, methods based on scanned meshes are

limited: the scanning equipment is expensive and not commonly used. My method

uses RGB images that are more common and thus much more widely applicable.

Pose and Shape from Images under Clothing. Bălan et al . [50] are the first to

explicitly estimate pose and shape from images of clothed humans. They relaxed the

loss on clothed regions and used a simple color-based skin detector as an optimization

constraint. The performance of this method can be easily degraded when the skin

detector is not helpful, e.g . when people have di↵erent skin colors or wear long

sleeves. However, my method is trained on a large number of images, which does

not require this constraint. Bogo et al . [51] used 2D pose machines to obtain joint

positions and optimizes the pose and shape parameters based on joint di↵erences

and inter-penetration error. Lassner et al . [52] created a semi-automatic annotated

dataset by incorporating a silhouette energy term on SMPLify [51]. They trained

a Decision Forest to regress the parameter based on a much more dense landmark

set provided by the SMPL model [30] during the optimization. Constraining the

silhouette energy e↵ect to a human body parameter subspace can reduce the negative

impact from loose clothing, but their annotated data are from the optimization of

SMPLify [51], which has introduced errors inherently. In contrast, I generate a large

number of human body meshes wearing clothes, with the pose and shape ground-

truth, which can then train the neural network to be “shape-aware”.
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2.2.2 Learning-Based Pose/Shape Estimations

Recently a number of methods have been proposed to improve the 3D pose

estimation with calibrated multi-view input, either using LSTM [53, 54], auto-

encoder [55, 56] or heat map refinement [57, 58]. They mainly focus on 3D joint

positions without parameterization, thus not able to articulate and animate. Choy

et al . [59] proposed an LSTM-based shape recovery network for general objects.

Varol et al . [4] proposed a 2-step estimation on human pose and shape. However,

both methods are largely limited by the resolution due to the voxel representation.

In contrast, my method outputs the entire body mesh with parameterization, thus is

articulated with a high-resolution mesh quality. Also, my method does not need the

calibration of the camera, which is more applicable to in-the-wild images. Kanazawa

et al . [32] used an iterative correction framework and regularized the model using

a learned discriminator. Since they do not employ any supervision other than joint

positions, the shape estimation can be inaccurate, especially, when the person is

relatively over-weighted. In contrast, my model is more shape-aware due to the

extra supervision from my synthetic dataset. Recent works [60, 61, 62] tackle the

human body estimation problem using various approaches; my method o↵ers better

performance in either single- or multi-view inputs by comparison.

2.2.3 Use of Synthetic Dataset

Since it is often time- and labor-intensive to gather a dataset large enough

for training a deep neural network, an increasing amount of attention is drawn

19



to synthetic dataset generation. Recent studies [21, 63] have shown that using a

synthetic dataset, if su�ciently close to the real-world data, is helpful in training

neural networks for real tasks. Varol et al . [64] built up a dataset (SURREAL) which

contains human motion sequences with clothing using the SMPL model and CMU

MoCap data [65]. While the SURREAL dataset is large enough and is very close to

my needs, it is still insu�cient in that (a) the clothing of the human is only a set of

texture points on the body mesh, meaning that it is a tight clothing, (b) the body

shape is drawn from the CAESAR dataset [66], where the uneven distribution of the

shape parameters can serve as a “prior bias” to the neural network, and (c) the data

only consists of single view images, which is not su�cient for my training. Di↵erent

from [63, 64], my data generation pipeline is based on physical simulation rather than

pasting textures on the human body, enabling the model to learn from more realistic

images where the human is wearing looser garments. Recent works [67, 68] also

generate synthetic data to assist training, but their datasets have only very limited

variance on pose, shape, and textures to prevent from overfitting. In contrast, my

dataset consists of a large variety of di↵erent poses, shapes, and clothing textures.

2.3 Overview

In this section, I give an overview of my approach. First, I define the problem

formally. Then, I introduce the basic idea of my approach.

Problem Statement: Given a set of multi-view images, I1 . . . In, taken for the

same person with the same pose, recover the underlying human body pose and
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shape.

In the training phase, I set n = 4, i.e. by default I take four views of the

person: front, back, left and right, although the precise viewing angles and their

orders are not required, as shown in Sec. 2.4.3. To extend my framework to be

compatible with single view images, I copy the input image four times as the input.

For more detail about image ordering and extensions to other multi-view input,

please refer to Sec. 2.4.3. I employ the widely-used SMPL model [30] as my mesh

representation, for its ability to express various human bodies using low dimensional

parametric structures.

As mentioned before, this problem su↵ers from ambiguity issues because of

the occlusions and the camera projection. Directly training on one CNN as the

regressor can easily lead to the model getting stuck in local minima, and it cannot

be adapted to an arbitrary number of input images. Inspired by the residual network

structure [69], I propose a multi-view multi-stage framework (Sec. 2.4) to address

this problem. Since real-world datasets su↵er from limited foreground/background

textures and ground-truth pose and shape parameters, I make use of synthetic data

as additional training samples (Sec. 2.5) so that the model can be trained to be

more shape-aware.

2.4 Model Architecture

In this section, I describe the configuration of my network model. As shown

in Fig. 2.1, I iteratively run my model for several stages of error correction. Inside
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Figure 2.1: The network structure. Multi-view images are first passed through an
image encoder to get feature vectors f1, ..., fn. With initial guesses of the camera
parameters ⇥1,i

c
and the human body parameters ⇥1,1

b
, the network starts to estimate

the parameters stage by stage and view by view. Each regression block at the
ith stage and the jth view regresses the corrective values from image feature fj
(red) and previous guesses ⇥i,j

c
(blue) and ⇥i,j

b
(green). The results will be added

up to the input values and passed to future blocks. While the new human body
parameters (green) can be passed to the next regression block, the view-specific
camera parameters (blue) can only be passed to the next stage of the same view.
Finally, the predictions of the n views in the last stage are outputted to generate
the prediction.

each stage, the multi-view image input is passed on one at a time. At each step, the

shared-parameter prediction block computes the correction based on the image fea-

ture and the input guesses. I estimate the camera and the human body parameters

at the same time, projecting the predicted 3D joints back to 2D for loss computa-

tion. The estimated pose and shape parameters are shared among all views, while

each view maintains its camera calibration and the global rotation. The loss at each

step is the sum of the joint loss and the human body parameter loss:

Li = �0L2Djoint + �1L3Djoint + LSMPL (2.1)

22



where �0 and �1 scale the units and control the importance of each term. I use L1

loss on 2D joints and L2 loss on others. LSMPL is omitted if there is no ground-truth.

2.4.1 3D Body Representation

I use the Skinned Multi-Person Linear (SMPL) model [30] as my human body

representation. It is a generative model trained from human mesh data. The pose

parameters are the rotations of 23 joints inside the body, and the shape parameters

are extracted from PCA. Given the pose and shape parameter, the SMPL model

can then generate a human body mesh consisting of 6980 vertices:

X(✓, �) = WG(✓)(X0 + S� +PR(✓)) (2.2)

where X 2 R6980 ⇥ R3 is the computed vertices, ✓ 2 R72 are the rotations of each

joint plus the global rotation, � 2 R10 are the PCA coe�cients, W,S and P are

trained matrices, G(✓) is the global transformation, X0 are the mean body vertices,

and R(✓) is the relative rotation matrix.

For the camera model, I use orthogonal projection since it has very few pa-

rameters and is a close approximation to real-world cameras when the subject is

su�ciently far away, which is mostly the case. I project the computed 3D body

back to 2D for loss computation:

x = sX(✓, �)RT + t (2.3)
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where R 2 R2 ⇥ R3 is the orthogonal projection matrix, s and t are the scale and

the translation, respectively.

2.4.2 Scalable Multi-View Framework

My proposed framework uses a recurrent structure, making it a universal model

applicable to the input of any number of views. At the same time, it couples

the shareable information across di↵erent views so that the human body pose and

shape can be optimized using image features from all views. As shown in Fig. 2.1,

I use a multi-view multi-stage framework to couple multiple image inputs, with

shared parameters across all regression blocks. Since the information from multiple

views can interact with each other multiple times, the regression needs to run for

several iterative stages. I choose to explicitly express this shared information as

the predicted human body parameter since it is meaningful and also contains all

of the information of the human body. Therefore the input of a regression block is

the corresponding image feature vector and the predicted camera and human body

parameters from the previous block. Inspired by the residual networks [69], I predict

the corrective values instead of the updated parameters at each regression block to

prevent gradient vanishing.

I have n blocks at each stage, where n is the number of views. Since all the

input images contain the same human body with the same pose, these n blocks

should output the same human-specific parameters but possibly di↵erent camera

matrices. Thus I share the human parameter output across di↵erent views and the
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camera transformation across di↵erent stages of the same view. More specifically, the

regression block at the ith stage and the jth view takes an input of (fj,⇥i,j

c
,⇥i,j

b
), and

outputs the correction �⇥i,j

c
,�⇥i,j

b
, where fj denotes the jth image feature vector,

⇥i,j

c
is the camera matrices and ⇥i,j

b
is the human parameters. After that, I pass

⇥i+1,j
c

= ⇥i,j

c
+�⇥i,j

c
to the next stage of the block at the same view, while I pass

⇥i,j+1
b

= ⇥i,j

b
+�⇥i,j

b
to the next block of the chain (Fig. 2.1). At last, I compute the

total loss as the average of the prediction of all n views in the final stage. Di↵erent

from static multi-view CNNs which have to fix the number of inputs, I make use of

the RNN-like structure in a cyclic form to accept any number of views, and avoid

the gradient vanishing by using the error correction framework.

2.4.3 Training and Inferring

Intuitively I use n = 4 in my training process, since providing front, back,

left, and right views can often give su�cient information about the human body. I

choose a random starting view from the input images to account for the potential

correlation between the first view and the initial guess. A specific order of the input

views is not required since (a) the network parameters of each regression block are

identical, and (b) none of the camera rotation information are shared among di↵erent

views. To make use of large public single-view datasets, I copy each instance to 4

identical images as my input.

During inference, my framework can adapt to images with any number of views

n as shown below. If n  4, I use the same structure as used for training. I can pad
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any of the input images to fill up the remaining views. As each view is independent

in terms of global rotation, the choice of which view to pad does not matter. If

n > 4, I extend my network to n views. Since this is an error-correction structure,

the exceeded values introduced by extra steps can be corrected back. Note that

the number of camera parameter corrections of each view always remains the same,

which is the number of stages.

Figure 2.2: Detailed network structure of the regression block at the ith stage and
the jth view. fj denotes the image feature of the jth view, ⇥i,j

c
denotes the camera

parameters, and ⇥i,j

b
denotes the human body parameters.

2.4.4 Implementation Details

During training, besides my synthetic dataset for enhancing the shape estima-

tion (detailed discussion in Sec. 2.5), I train on MS-COCO [70], MPI INF 3DHP [71]

and Human3.6M [72] datasets. Each mini-batch consists of half single view and half

multi-view samples. Di↵erent from HMR [32], I do not use the discriminator. This

is because (a) I initialized my parameters as the trained model of HMR [32], (b) the

ground-truth given by my dataset serves as the regularization to prevent unnatural

pose not captured by joint positions (e.g . foot orientations), and most importantly,

(c) the ground-truth SMPL parameters from their training dataset does not have

su�cient shape variety. Enforcing the discriminator to mean-shape biased dataset
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will prevent the model to predict extreme shapes. I use 50-layer ResNet-v2 [73] for

image feature extraction. The detailed structure inside the regression block is shown

in Fig. 2.2. I fix the number of stages as 3 throughout the entire training and all

testing experiments. The learning rate is set to 10�5, and the training lasts for 20

epochs. Training on a GeForce GTX 1080 Ti GPU takes about one day.

2.5 Data Preparation

To the best of my knowledge, there is no public real-world dataset that cap-

tures motion sequences of human bodies, annotated with pose and shape (either

using a parametric model or raw meshes), with considerable shape variation and

loose garments. This lack of data, in turn, forces most of the previous human body

estimations to focus only on joints. The most recent work [32] that recovers both

pose and shape of human body does not impose an explicit shape-related loss func-

tion, so their model is not aware of varying human body shapes. In order to make

my model shape-aware under clothing, I need data with ground-truth human body

shapes where the garments should be dressed rather than pasted on the skin. A

large amount of data is needed for training; sampling real-world data that cap-

tures the ground-truth shape parameters is both challenging and time-consuming.

I choose an alternate method — using synthesized data. In this section, I propose

an automatic pipeline to generate shape-aware training data, to enhance the shape

estimation performance.

27



2.5.1 Parameter Space Sampling

I employ the SMPL model [30], which contains pose and shape parameters for

human body. Pose parameters are rotation angles of joints. To sample meaningful

human motion sequences in daily life, I use the CMU MoCap dataset [65] as my

pose subspace. The shape parameters are principle component weights. It is not

ideal to sample the shape parameters using Gaussian distribution; otherwise there

will be many more mean-shape values than extreme ones, resulting in an unbalanced

training data. To force the model to be more shape-aware, I choose to uniformly

sample values at [µ� 3�, µ + 3�] instead, where µ and � represent the mean value

and standard deviation of the shape parameters.

2.5.2 Human Body Motion Synthesis

After combining CMU MoCap pose data with the sampled shape parameters,

it is likely that the human mesh generated by the SMPL model has inter-penetration

due to the shape di↵erence. Since inter-penetration is problematic for cloth simula-

tion, I design an optimization scheme to avoid it in a geometric sense:

min kx� x0k s.t. g(x) + ✏  0 (2.4)

where x and x0 stand for the vertex positions, g(x) is the penetration depth, and ✏

is designed to reserve space for the garment. The main idea here is to avoid inter-

penetrations by popping vertices out of the body, but at the same time keeping
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the adjusted distance as small as possible, so that the body shape does not change

much. This practical method works su�ciently well in most of the cases.

2.5.3 Cloth Registration and Simulation

Before I can start to simulate the cloth on each body generated, I first need

to register them to the initial pose of the body. To account for the shape variance

of di↵erent bodies, I first manually register the cloth to one of the body meshes.

I mark the relative rigid transformation T of the cloth. For other body meshes, I

compute and apply the global transformation, including both the transformation T

and the scaling between two meshes. At last, I use the similar optimization scheme

described in Sec. 2.5.2 to avoid any remaining collisions since it can be assumed that

the amount of penetration after the transformation is small.

I use ArcSim [74] as the cloth simulator. I do not change the material param-

eters during the data generation. However, I do randomly sample the tightness of

the cloth. I generally want both tight and loose garments in my training data.

2.5.4 Multi-View Rendering

I randomly apply di↵erent background and cloth textures in di↵erent sets of

images. I keep the same cloth textures but apply di↵erent background across dif-

ferent views. I use the four most common views (front, back, left, and right), which

are defined w.r.t. the initial human body orientation and fixed during the render-

ing. I sample 100 random shapes and randomly apply them to 5 pose sequences in
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Figure 2.3: Examples of rendered synthetic images. I use a large number of real-
world backgrounds and cloth textures so that the rendered images are realistic and
diverse.

the CMU MoCap dataset (slow and fast walking, running, dancing, and jumping).

After resolving collisions described in Sec. 2.5.3, I register two sets of clothes on

it, one with a dress and the other with a t-shirt, pants, and jacket (Fig. 2.3). The

pose and garment variety is arguably su�cient because (a) they provide most com-

monly seen poses and occlusions, and (b) it is an auxiliary dataset providing shape

ground-truth which is jointly trained with real-world datasets that have richer pose

ground-truth. I render two instances of each of the simulated frames, with randomly

picked background and cloth textures. Given an average of 80 frames per sequence,

I have generated 32,000 instances, with a total number of 128,000 images. I set

the first 90 shapes as the training set and the last 10 as the test set. I ensure the

generalizability across pose and clothing by coupling my dataset with other datasets

with joint annotations (Sec. 2.4.4).
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2.6 Results

I use the standard test set in Human3.6M and the validation set of MPI INF 3DHP

to show the performance gain by introducing multi-view input. Since no publicly

available dataset has ground-truth shape parameters or mesh data, or data contains

significantly di↵erent shapes from those within the normal range of BMI (e.g . over-

weight or underweight bodies), I test my model against prior work (as the baseline)

using the synthetic test set. Also, I test on real-world images to show that my model

is more shape-aware than the baseline method – qualitatively using online images

and quantitatively using photographs taken with hand-held cameras.

My method does not assume prior knowledge of the camera calibration so the

prediction may have a scale di↵erence compared to the ground-truth. There is also

extra translation and rotation due to image cropping. To make a fair comparison

against other methods, I report the metrics after a rigid alignment, following [32].

2.6.1 Ablation Study

I conduct an ablation study to show the e↵ectiveness of my model and the

synthetic dataset. In the experiments, HMR [32] is fine-tuned with the same learning

setting.

2.6.1.1 Pose Estimation

I tested my model on datasets using multi-view images to demonstrate the

strength of my framework. I use Mean Per Joint Position Error (MPJPE) of the
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14 joints of the body, as well as Percentage of Correct Keypoints (PCK) at the

threshold of 150mm along with Area Under the Curve (AUC) with threshold range

0-150mm [75] as my metrics. PCK gives the fraction of keypoints within an error

threshold, while AUC computes the area under the PCK curve, presenting a more

detailed accuracy within the threshold.

I use the validation set of MPI INF 3DHP [32] as an additional test dataset

since it provides multi-view input. It is not used for validation during my training.

I also evaluated the original test set, which consists of single-view images.

Comparison: As shown in Table 2.1 and 2.2, under the same training condi-

tion, my model in single-view has similar, if not better, results in all experiments.

Meanwhile, my model in multi-view achieves much higher accuracy.

Method
MPJPE

w/ syn. training
MPJPE

w/o syn. training
HMR 60.14 58.1

Mine (single) 58.55 59.09
Mine (multi) 45.13 44.4

Table 2.1: Comparison results on Human3.6M using MPJPE. Smaller errors implies
higher accuracy.

Method
PCK/AUC/MPJPE
w/ syn. training

PCK/AUC/MPJPE
w/o syn. training

HMR 86/49/89 88/52/83
Mine (single) 88/52/84 87/52/85
Mine (multi) 95/63/62 95/65/59

Table 2.2: Comparison results on MPI INF 3DHP in PCK/AUC/MPJPE. Better
results have higher PCK/AUC and lower MPJPE.
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2.6.1.2 Shape Estimation

To the best of my knowledge, there is no publicly available dataset that pro-

vides images with the captured human body mesh or other representation among a

su�ciently diverse set of human shapes. Since most of the images-based datasets are

designed for joint estimation, I decide to use my synthetic test dataset for large-scale

statistical evaluation, and later compare with [32] using real-world images.

Other than MPJPE for joint accuracy, I use the Hausdor↵ distance between

two meshes to capture the shape di↵erence to the ground-truth. The Hausdor↵

distance is the maximum shortest distance of any point in a set to the other set,

defined as follows:

d(V1, V2) = max(d̂(V1, V2), d̂(V2, V1)) (2.5)

d̂(V1, V2) = max
u2V1

min
v2V2

ku� vk2 (2.6)

where V1 and V2 are the vertex set of two meshes in the same ground-truth pose, in

order to negate the impact of di↵erent poses. Intuitively a Hausdor↵ distance of d

means that by moving each vertex of one mesh by no more than d away, two meshes

will be exactly the same.

Method
MPJPE/HD

w/ syn. training
MPJPE/HD

w/o syn. training
HMR 42/83 89/208

Mine (single) 44/65 102/283
Mine (multi) 27/53 84/273

Table 2.3: Comparison results on my synthetic dataset in MPJPE/Hausdor↵ Dis-
tance(HD). Better results have lower values.
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As shown in Table 2.3, my model with multi-view input achieves the smallest

error values, when compared to two other baselines. After joint-training with syn-

thetic data, all models perform better in shape estimation, while maintaining similar

results using other metrics (Table 2.1 and 2.2), i.e. they do not overfit. The joint

errors of the HMR [32] are fairly good, so they can still recognize the synthesized

human in the image. However, a larger Hausdor↵ distance indicates that they lose

precision on the shape recovery.

Adding my synthetic datasets for training can e↵ectively address this issue

and thereby provide better shape estimation. I achieved a much smaller Hausdor↵

distance (with syn. training) even only using single view. This is because my

refinement framework is e↵ectively deeper, aiming at not only the pose but also the

shape estimation, which is much more challenging than the pose-only estimation.

With the same method, multi-view inputs can further improve the accuracy of shape

recovery compared to results using only one single-view image.

2.6.2 Comparisons with Multi-View Methods

Since other multi-view methods only estimate human poses but not the entire

body mesh, I compare the pose estimation results to them in Human3.6M. As shown

in Table 2.4, I achieved state-of-the-art performance even when camera calibration is

unknown and no temporal information is provided. As stated in Sec. 2.6, unknown

camera parameters result in a scaling di↵erence to the ground-truth, so the joint

error would be worse than what it actually is. After the Procrustes alignment that
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accounts for this e↵ect, my method achieves the best MPJPE compared to other

methods. Another potential source of the error is that my solution is constrained

in a parametric subspace, while other methods output joint positions directly. In

contrast, my method computes the entire human mesh in addition to joints and the

result can be articulated and animated directly.

Method MPJPE Known Camera? Run Time Temporal Opt? Articulated? Shape?
Rhodin et al . [76] - Yes 0.025fps Yes No Mix-Gaussian
Rhodin et al . [55] 98.2 Yes - Yes No No
Pavlakos et al . [57] 56.89 Yes - No No No
Trumble et al . [53] 87.3 Yes 25fps Yes No No
Trumble et al . [56] 62.5 Yes 3.19fps Yes No Volumetric
Núñez et al . [54] 54.21 Yes 8.33fps Yes No No
Tome et al . [58] 52.8 Yes - No No No

Mine 79.85
No 33fps No Yes Parametric

Mine (PA) 45.13

Table 2.4: Comparison on Human3.6M with other multi-view methods. My method
has comparable performance with previous work even without the assistance of cam-
era calibration or temporal information. PA stands for Procrustes Aligned results.

2.6.3 Real-World Evaluations

Method Standing Sitting
HMR [32] 7.72% 7.29%
BodyNet [4] 13.72% 29.30%
Mine (single) 6.58% 10.18%
Mine (multi) 6.23% 5.26%

Table 2.5: Comparison results on tape-measured data using average relative errors
(lower the better).

I first conduct a study on how my method performs di↵erently with either

single- or multi-view inputs under various conditions. My test subjects have two

poses: standing and sitting, and the model is additionally tested on two sets of

variants from the images. One is slightly dimmed, and the other has a large black
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occlusion at the center of the first image. I use the percentage of errors from common

body measurements used by tailors (i.e. lengths of neck, arm, leg, chest, waist, and

hip), which is obtained using direct tape measurements on the subjects. I report the

average relative error in Table 2.5. It is observed that single-view results are a↵ected

by the “occluded sitting” case, while the multi-view input can largely reduce the

error. The reason why HMR is not impacted is that they uniformly output average

human shapes for all input images. I also report results from BodyNet [4]. BodyNet

outputs voxelized mesh and needs a time-consuming optimization to output the

SMPL parameters. Its accuracy largely depends on the initial guess. Therefore, it

resulted in a large amount of errors on the “sitting” case.

I also tested my model on other online images, where no such measurement

can be done. As shown in Fig. 2.4, HMR [32] can predict the body pose but fails

on inferring the person’s shape. On the contrary, my model not only refines the

relative leg orientations but also largely respects and recovers the original shape of

the body.

2.6.4 Multi-View Input in Daily Life

It is often di�cult to have multiple cameras from di↵erent view angles cap-

turing a subject simultaneously. My model has the added benefit of not requiring

the multi-view input be taken with the exact same pose. As the model has an error

correction structure, it can be applied as long as the poses of the four views are

not significantly di↵erent. I do not impose any assumptions on the background, so
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(a) The input image. (b) My result. (c) HMR.

Figure 2.4: Prediction results compared to HMR. My model can better capture the
shape of the human body. The recovered legs and chest are closer to the person in
the image.

the images can be even taken with a fixed camera and a “rotating” human sub-

ject, which is the typically case when the method is used in applications like virtual

try-on.

2.6.5 Extra Test Results

Table 2.6 and 2.8 shows the test results before Procrustes Alignment in MPI INF 3DHP

validation set and Human3.6M, respectively. The same conclusion about over-fitting

and multi-view improvement can also be drawn from these data.

Table 2.7 shows the result in MPI INF 3DHP test dataset. Since there is only

one view fed into the model, the results are similar.
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Figure 2.5: Results on images with varying pose and shape. The top row is the
input image. The middle row shows my recovery results, and the bottom row shows
the results from HMR [32]. Mine achieves better shape recovery results.

Figure 2.6: Results on real-world multi-view images. The top row is the input image.
The middle row shows my recovery results, and the bottom row shows the results
from HMR [32]. HMR is only given the front view as input. Mine achieves better
pose recovery results due to more view angles.

2.6.6 Additional Results on Real-World Images

As shown in Fig. 2.5, given similar joint estimation results, my model captures

more image features that indicate the shape of the human body and thereby gives
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Method
PCK/AUC/MPJPE
w/ syn. training

PCK/AUC/MPJPE
w/o syn. training

HMR [32] 66/33/141 71/36/129
Mine (single) 69/32/139 68/33/138
Mine (multi) 72/34/128 72/35/126

Table 2.6: Results on MPI INF 3DHP, validation set, before Procrustes aligment.

Method
PCK/AUC/MPJPE
w/ syn. training

PCK/AUC/MPJPE
w/o syn. training

HMR [32] 65/30/139 65/29/137
HMR (PA) 84/47/91 85/48/89

Mine 65/29/142 66/29/137
Mine (PA) 85/49/89 86/49/89

Table 2.7: Results on MPI INF 3DHP, test set. The results of [32] are tested on
cropped images by Mask-RCNN [77] so the values have minor di↵erence than their
reported ones. Only single view is available in this dataset.

much better results in terms of human shape. My method can distinguish between

fat (Column 1-5) and slim (Column 6-8) persons, and between male and female.

On the other hand, the output shapes from HMR are almost the same, which is

around the mean shape value. By incorporating the shape-aware synthetic dataset,

my method largely improves the recovery when the input human body does not have

an average shape. I also tested with real-world multi-view images vs. single-view

HMR. I feed the front view of the subject to HMR but input all views into my model.

As shown in Fig. 2.6, the front view does not provide complete information of the

subject pose, resulting in large pose errors on the limbs. By sharing information

from more views (most importantly side views in this case), my model can e↵ectively

reduce the ambiguity from the camera projection and thereby provide good pose

estimations across all views.
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2.6.7 Comparison on Human3.6M with Single-View Methods

Table 2.8 shows the comparison with single-view results. As mentioned previ-

ously, the reason I don’t have much better accuracy before rigid alignment is that:

• My method does not assume known camera, resulting in an unknown scaling

di↵erence to the real-world coordinates. After the Procrustes alignment, I

achieved similar (and better with multi-view) performance.

• My solution is constrained in a subspace. Other methods output joint positions

directly so they have more DOF and can be more accurate. However, my

output is more comprehensive, as it contains the entire human mesh in addition

to joints and the result can be articulated and animated directly.

Compared to Kolotouros et al . [62], my model is trained on a much more

diverse dataset (e.g . MS-COCO), which means that the accuracy may not be mini-

mized on the specific subset (Human 3.6M).

2.6.8 Results Without Training on Synthetic Data

I further tested another variant of my model, which is trained without synthetic

data (Fig. 2.7). It achieves better joint estimation, but the recovered human body

does not seem to be visually correct, especially at the end-e↵ectors. This is because

the joint-only supervision does not impose any constraints on the orientations of

the end-e↵ectors, resulting in an arbitrary guess. The HMR model [32] avoids this

by adding a discriminator, which however could have negative impact on shape
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Method MPJPE PA-MPJPE
Tome et al . [35] 88.39 -
Rogez et al . [78] 87.7 71.6
Mehta et al . [31] 80.5 -

Pavlakos et al . [33] 71.9 51.23
Mehta et al . [75] 68.6 -
Sun et al . [79] 59.1 -
Zhou et al . [37] 107.26 -
Debra et al . [80] 55.5 -

*Kolotouros et al . [62] 74.7 51.9
*Omran et al . [60] - 59.9
*Pavlakos et al . [61] - 75.9

*HMR [32] 87.97 58.1
*Mine (single-view) 88.34 58.55
*Mine (multi-view) 79.85 45.13

Table 2.8: Results on Human3.6M. My method results in smaller reconstruction
errors compared to HMR [32]. * indicates methods that output both 3D joints and
shapes.

estimations, as discussed in Sec. 2.4.4. My synthetic dataset provides a supervision

to not only the joint positions but also the rotations, hence the model will learn a

prior at the end-e↵ectors, demonstrating more natural results.

Figure 2.7: My model trained without synthetic data.

2.6.9 Detailed Errors on Real World Evaluation

The error percentages of each measure are shown in Table 2.9. Since the

length of the arm and leg can be seen clearly in the front view, both inputs provide a
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reasonably good estimation. However, given more views, my model can significantly

reduce the error on other measurements, especially on those of chest, waist, and hip.

I found that image illuminance has a negligible e↵ect on the recovery result, which is

due to the translation invariance of the convolutional layers. Occlusion has a notable

impact on the recovery using only a single-view image, given only one view of the

human body. However, by incorporating more views using my network model, the

estimation can be considerably improved, indicating that the model using multi-view

images is more robust to occlusion than with a single-view image as input.

error % Regular Dimmed Partly Occluded
input Standing Sitting Standing Sitting Standing Sitting

# of views Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi
neck 1.12 12.19 0.048 3.53 0.58 11.31 0.39 2.55 0.45 11.28 22.11 6.11
arm 4.76 4.22 8.03 7.33 6.21 4.95 8.10 6.89 5.20 3.82 7.20 6.70
leg 6.65 4.66 2.94 3.46 5.18 3.92 2.83 3.64 2.53 3.54 4.94 4.24
chest 4.59 7.72 8.40 3.1 6.20 7.20 8.13 3.19 19.80 1.57 30.04 13.72
waist 2.42 12.80 5.46 0.70 3.73 11.98 5.01 0.0084 13.78 8.52 30.05 10.61
hip 8.88 0.62 11.88 5.83 11.36 0.12 11.78 5.50 15.08 1.65 15.95 7.54

error % Regular Dimmed Partly Occluded
input Standing Sitting Standing Sitting Standing Sitting
method HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet HMR BodyNet
neck 10.4 2.9 4.8 26.3 8.4 1.6 4.6 26.2 9.2 3.9 5.7 6.8
arm 6.1 21.3 9.8 25.6 8.6 22.8 9.7 23.6 8.1 19.5 9.7 9.6
leg 7.9 6.3 1.8 4.4 4.3 6.6 1.8 3.3 5.1 6.2 2.1 3.0
chest 11.2 26.3 11.7 51.9 11.7 24.9 11.6 41.3 11.9 24.9 11.6 21.3
waist 9.4 9.0 8.7 42.7 9.4 7.7 8.5 33.7 9.7 8.3 8.4 11.4
hip 1.25 19.2 7.8 79.8 3.5 18.8 7.7 80 2.9 17 5.5 36.9

Table 2.9: Percentages of errors in common measurements of the human body under
various lighting conditions using single-view vs. multi-view images. The multi-view
model performs significantly better in estimating measurements of chest, waist, and
hip, and is more robust, given variations in lighting and partial occlusion.

2.6.10 Evaluation on 3D People in the Wild.

I have conducted the evaluation on 3D People in the Wild dataset. As shown in

Table 2.10, although the dataset consists of single view images of only a few subjects

with nearly standard shapes, my model achieved better accuracy over HMR, while

Alldieck et al . did not generalize well. The metric I used is mean joint error for
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pose, and mean vertex error with ground-truth pose for shape.

2.6.11 Running Time

The previous work [32] trained 55 epochs for 5 days, while mine trained 20

epochs for 1 day. I list the training time here for reference, but it is actually not

comparable since the batch size, epoch size and GPU type are not the same. In

my environment, the inference time of HMR [32] is 2 microseconds while mine takes

7.5 (per view). This is because my network has a deeper structure to account for

multiple views.

Method Mean Joint Err. Mean Vertex Err. (GT Pose)
HMR 93.77 21.71

Alldieck et al . [68] 169.61 47.07
Mine 96.86 20.96

Table 2.10: Evaluation on an unseen single-view dataset: 3D People in the Wild.
Values are mean joint error for pose and mean vertex error with ground-truth pose.
My method has smaller errors than Alldieck et al .

2.7 Conclusion and Future Work

I proposed a novel multi-view multi-stage framework for pose and shape es-

timation. The framework is trained on datasets with at most 4 views but can

be naturally extended to an arbitrary number of views. Moreover, I introduced

a physically-based synthetic data generation pipeline to enrich the training data,

which is very helpful for shape estimation and regularization of end e↵ectors that

traditional datasets do not capture. Experiments have shown that my trained model
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can provide equally good pose estimation as state-of-the-art using single-view im-

ages, while providing considerable improvement on pose estimation using multi-view

inputs and a better shape estimation across all datasets.

While synthetic data improves the diversity of human bodies with ground-

truth parameters, a more convenient cloth design and registration are needed to

minimize the performance gap between real-world images and synthetic data. In

addition, other variables such as hair, skin color, and 3D backgrounds are subtle

elements that can influence the perceived realism of the synthetic data at the higher

expense of a more complex data generation pipeline. With the recent progress in

image style transfer using GAN [81], a promising direction is to transfer the synthetic

result to more realistic images to further improve the learning result.

This work has been published in the proceedings of the International Confer-

ence on Computer Vision (ICCV) 2019.
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