
Chapter 3: Di↵erentiable Simulation for Material Optimization

3.1 Introduction

Given the body estimation results in Chapter 2, the main task for building a

virtual try-on system is to dress the given body with virtual garments. However,

creating a cloth mesh that faithfully represents a real garment in a digital system is

not easy. First, the geometry of the mesh needs to be designed well to fit the body.

Second, the fabric materials of the designed garment are even more challenging to

model correctly. While the geometry of the garment can still be intuitively hand

crafted by experienced artists or designers, it is di�cult to determine the fabric

materials that exhibit mechanical properties closely resembling the real ones. There

are two possible approaches to achieve this material cloning/estimation task. One

way is to use supervised machine learning on manually labelled material data, which

is labor-intensive and error-prone. The other method makes use of the geometric

similarity instead of the direct material label, but needs a module that can compute

the analytic relationship between the resulting geometry and the estimations or

guesses of the fabric materials. Di↵erentiable physics that can derive gradients

regarding the simulation inputs can o↵er such a capability. With the di↵erentiable

simulation, one can either use an optimizer or train a network model to predict the

45

materials from the input, and compute its geometric appearance analytically. After

comparing with the target shapes, a loss can then be created and back-propagate

to the network, guiding the learning in a more intuitive way.

In this chapter, I propose a di↵erentiable cloth simulation algorithm. First, I

use dynamic collision detection since the actual collision pairs are very sparse. The

collision response is solved by quadratic optimization, for which I can use implicit

di↵erentiation to compute the gradient. I directly solve the equations derived from

implicit di↵erentiation by using the QR decomposition of the constraint matrix,

which is much smaller than the original linear system and is often of low rank.

This approach reduces the gradient computation to a linear system of a small up-

per triangular matrix (the R component of the decomposition), which enables fast

simulation and backpropagation.

My experiments indicate that the presented method makes di↵erentiable cloth

simulation practical. Using my method, the largest size of the linear system is 10x-

20x smaller than the original solver in the backpropagation of the collision response,

and the solver is 60x-130x faster. I demonstrate the potential of di↵erentiable cloth

simulation in a number of application scenarios, such as physical parameter esti-

mation and motion control of cloth. With only a few samples, the di↵erentiable

simulator can optimize its input variables to fit the data, thereby inferring physical

parameters from observations and reaching desired control goals.

46

3.2 Related Work

Di↵erentiable physics. With recent advances in deep learning, there has been

increasing interest in di↵erentiable physics simulation, which can be combined with

other learning methods to provide physically consistent predictions. Belbute-Peres

et al . [13] and Degrave et al . [14] proposed rigid body simulators using a static for-

mulation of the linear complementarity problem (LCP) [82, 83]. Toussaint et al . [15]

developed a robot reasoning system that can achieve user-defined tasks and is based

on di↵erentiable primitives. Hu et al . [16] implemented a di↵erentiable simulator

for soft robots based on the Material Point Method (MPM). They store the object

data at every simulation step so that the gradient can be computed out of the box.

Schenck and Fox [17] embedded particle-based fluid dynamics into convolutional

neural networks, with precomputed signed distance functions for collision handling.

They solved or avoided collisions by assuming special object shapes, transferring to

an Eulerian grid, or solving the corresponding collision constraint equation.

None of these methods can be applied to cloth simulation. First, cloth is a 2D

surface in a 3D world; thus methods that use an Eulerian grid to compute material

density, such as MPM [16], are not applicable. Second, the collision constraints in

cloth simulation are more dynamic and complex given the high number of degrees

of freedom; thus constructing a static dense LCP for the entire system [13, 14] or

constructing the overall state transition graph [15] is ine�cient and usually impos-

sible for cloth of common resolution, since contact can happen for every edge-edge

or vertex-face pair. Lastly, the shape of cloth changes constantly so self-collision

47

cannot be handled by precomputed signed distance functions [17].

In contrast, my method uses dynamic collision detection and computes the

gradients of the collision response by performing implicit di↵erentiation on the

quadratic optimization used for computing the response. I utilize the low dimension-

ality and rank of the constraint matrix in the quadratic optimization and minimize

the computation needed for the gradient propagation by giving an explicit solution

to the linear system using QR decomposition of the constraint matrix.

Deep learning and physics. Supervised deep networks have been used to approx-

imate physical dynamics. Mrowca et al . [84] and Li et al . [85] learned interaction

networks to model particle systems. Ingraham et al . [86] trained a model to predict

protein structures from sequences using a learnable simulator; the simulator predicts

the deformation energy as an approximation to the physical process. Deep networks

have also been used to support the simulation of fluid dynamics [87, 88, 89]. My

method di↵ers from many works that use deep networks to approximate physical

systems in that I backpropagate through the true physical simulation. Thus my

method conforms to physical law regardless of the scale of the problem. It can also

naturally accept physical parameters as input, which enables learning from data.

Deep learning and cloth. Coupling cloth simulation with deep learning has be-

come a popular way to solve problems such as detail refinement, garment retargeting,

and material estimation. Yang et al . [21] proposed a recurrent model to estimate

physical cloth parameters from video. Lähner et al . [23] trained a GAN to generate

wrinkles on a coarse garment mesh which can then be automatically registered to a

48

human body using PCA. Gundogdu et al . [8] trained a graph convolutional frame-

work to generate drapes and wrinkles given a roughly registered mesh. Santesteban

et al . [90] developed an end-to-end retargeting network using a parametric human

body model with displacements to represent the cloth.

These applications may benefit from my method. For garment retargeting

problems, the relationship between body pose and vertex displacement is made ex-

plicit via the computed gradient, which can then be applied in network regularization

for better performance. For parameter estimation, the di↵erentiable simulation pro-

vides an optimization-based solution rather than a learning-based one. Instead of

learning statistics from a large amount of data, I can directly apply gradient-based

optimization via the simulator, which does not require any training data.

3.3 Di↵erentiable Cloth Simulation

In this section, I introduce the main algorithms for the gradient computation.

In general, I follow the computation flow of the common approach to cloth simula-

tion: discretization using the finite element method [91], integration using implicit

Euler [27], and collision response on impact zones [74, 92]. I use implicit di↵eren-

tiation in the linear solve and the optimization in order to compute the gradient

with respect to the input parameters. The discontinuity introduced by the collision

response is negligible because the discontinuous states constitute a zero-measure set.

During the backpropagation in the optimization, the gradient values can be directly

computed after QR decomposition of the constraint matrix.

49

3.3.1 Cloth Simulation Basics

Generally, cloth simulation includes three steps: force computation, dynamic

solve, and collision handling. Extra steps, such as plasticity handling and strain

limiting, are omitted since they are not essential components of a basic cloth simu-

lation.

3.3.1.1 Force Computation

For external forces, the most common ones are gravity and wind forces, which

are both straightforward. I focus on internal, constraint and frictional forces here.

Clothes are usually modeled as a 2D manifold mesh in 3D space. I apply Finite

Element Method (FEM) to compute internal forces. For each triangle face in the

mesh, I compute the deformation gradient as a variable of the strain:

F =
@x

@X
(3.1)

Here, x is the current 3D position of the triangle, and X is their coordinate in

the 2D material space. Then, the stress (or internal forces) is computed using the

deformation gradient F. Usually a strain energy E is defined and I use its negative

gradient as the force. In my base simulator, the stress is defined as a piece-wise

linear function regarding the Green-Lagrange Strain, defined by Wang et al . [93]:

E =
1

2
(F>F� I) (3.2)

50

Note that due to the geometric modeling of the cloth, there is no force caused

by the thickness of the cloth. Most simulators use an extra ‘bending force’ as a

compensation, following Grinspun et al . [94]. The bending force is defined between

two adjacent faces when their dihedral angle is not a resting one.

The other two categories are relatively simpler. Constraint forces are defined

as the negative gradient of the constraint energy, while frictional forces are created

when two objects are in close proximity and have relative motions.

3.3.1.2 Dynamic Solve

In the simplest case, I solve Ma = f for the acceleration and update the

position and velocity accordingly, as shown in Algorithm 1. This Forward Euler

method su↵ers from the well-known stability issue and often limits the time step

size for the simulation. In order to take larger step for faster simulation, Backward

Euler is often used. More specifically, I want my acceleration to match the force

computed in the next time step:

M
�v

�t
= f(x+�x) = f(x+�t(v +�v)) (3.3)

By using Taylor Expansion, I have:

(M��t2
@f

@x
)�v = �tf(x+�tv) (3.4)

51

So the matrix used in the linear solve (Sec. 3.3.3) is defined as:

M̂ = M��t2
@f

@x
(3.5)

As long as I have the Jacobian of the forces @f
@x , I can compute a more stable result

of �v and can apply larger �t, as discussed by Bara↵ and Witkin [27].

3.3.1.3 Collision Handling

As introduced in Sec. 3.3.4, I used continuous collision detection between two

simulation steps to detect all possible collisions. When two faces collide with each

other, there are two di↵erent collision types: vertex-face collision and edge-edge

collision. The common trait is that at time of collision, the four involved vertices

are in the same plane. Based on this, I can develop and solve a cubic equation

regarding the time of collision, t (Sec. 3.3.4).

When the collision is detected, I need to form the corresponding constraint at

time t:

4X

k=1

wkxk(t)

!
· n � d (3.6)

Here, wk is the weight parameter, xk(t) is the vertex position at time t, n is the

normal of the plane, and d is the cloth thickness. The weight parameters are de-

termined using barycentric coordinates of the intersection point in the face (in the

vertex-face collision case) or on the edges (in the edge-edge collision case).

52

I consider w and n as constants during the optimization, and xk(t) is lin-

early interpolated between two time steps. So it is a linear constraint regarding x.

Combining all constraints together, I have:

Gx+ h 0. (3.7)

In the collision response phase, I want to introduce minimum energy to move

the vertex away so that all constraints can be satisfied. Therefore, I form this

optimization as a QP problem, as shown later in Sec. 3.3.5.

3.3.2 Overview

I begin by defining the problem formally and providing common notation. A

triangular mesh M = {V , E ,F} consists of sets of vertex states, edges, and faces,

where the state of the vertices includes both position x and velocity v. Given a

cloth mesh Mt together with obstacle meshes Mobs

t
at step t, a cloth simulator can

compute the mesh state Mt+1 at the next step t+1 based on the computed internal

and external forces and the collision response. A simple simulation pipeline is shown

in Algorithm 1, where M is the mass matrix, f is the force, and a is the acceleration.

For more detailed description of cloth simulation, please refer to Sec. 3.3.1. All

gradients except the linear solve (Line 4 in Algorithm 1) and the collision response

(Line 7) can be computed using automatic di↵erentiation in PyTorch [95].

53

Algorithm 1: Cloth simulation

1: v0 0
2: for t = 1 to n do
3: M, f compute forces(x,v)
4: at M�1f
5: vt vt�1 + at�t
6: xt xt�1 + vt�t
7: xt xt+ collision response(xt,vt,xobs

t
,vobs

t
)

8: vt (xt � xt�1)/�t
9: end for

3.3.3 Derivatives of the Physics Solve

In modern simulation algorithms, implicit Euler is often used for stable inte-

gration results. Thus the mass matrix M used in Algorithm 1 often includes the

Jacobian of the forces. I denote it below as M̂ in order to mark the di↵erence. A

linear solve will be needed to compute the acceleration since it is time consuming to

compute M̂�1. I use implicit di↵erentiation to compute the gradients of the linear

solve. Given an equation M̂a = f with a solution z and the propagated gradient

@L
@a |a=z, where L is the task-specific loss function, I can use the implicit di↵erentiation

form

M̂@a = @f � @M̂a (3.8)

to derive the gradient as

@L
@M̂

= �daz
> @L

@f
= d>

a , (3.9)

54

where da is obtained from the linear system

M̂>da =
@L
@a

>
. (3.10)

The proof is as follows. I take @L
@f as an example here, the derivation of @L

@M̂
is

similar:

@L
@f

=
@L
@a

· @a
@f

= d>
a M̂ · M̂†I = d>

a . (3.11)

The first equality is given by the chain rule, the second is given by Equations 3.8

and 3.10, and M̂† is the pseudoinverse of matrix M̂.

3.3.4 Dynamic Collision Detection and Response

As mentioned in Sec. 3.1, a static collision solver is not suitable for cloth

because the total number of possible collision pairs is very high: quadratic in the

number of faces. A common approach in cloth simulation is to dynamically detect

collision on the fly and compute the response. I use a bounding volume hierarchy

for collision detection [96], and non-rigid impact zones [92] to compute the collision

response.

Specifically, I solve a cubic equation to detect the collision time t of each

vertex-face or edge-edge pair that is su�ciently close to contact:

(x1 + v1t) · (x2 + v2t)⇥(x3 + v3t) = 0, (3.12)

55

where xk and vk (k = 1, 2, 3) are the relative position and velocity to the first

vertex. A solution that lies in [0, 1] means that a collision is possible before the next

simulation step. After making sure that the pair indeed intersects at time t, I set

up one constraint for this collision, forcing the signed distance of this collision pair

at time t to be no less than the thickness of the cloth �. The signed distance of

the vertex-face or edge-edge pair is linear to the vertex position x. The set of all

constraints then makes up a quadratic optimization problem as discussed later in

Sec. 3.3.5.

For backpropagation, I need to compute the derivatives of the solution t since

it is related to the parameters of the constraints. I use implicit di↵erentiation here

to simplify the process. Generally, given a cubic equation ax3 + bx2 + cx + d = 0,

its implicit di↵erentiation is of the following form:

(3ax2 + 2bx+ c)@x = @ax3 + @bx2 + @cx+ @d. (3.13)

Therefore I have

@x

@a

@x

@b

@x

@c

@x

@d

�
=

1

3ax2 + 2bx+ c

x3 x2 x 1

�
. (3.14)

3.3.5 Derivatives of the Collision Response

A general approach to integrating collision constraints into physics simulation

has been proposed by Belbute-Peres et al . [13]. However, as mentioned in Sec-

tions 3.1 and 3.2, constructing a static LCP is often impractical in cloth simulation

56

because of high dimensionality. Collisions that actually happen in each step are

very sparse compared to the complete set. Therefore, I use a dynamic approach

that incorporates collision detection and response.

Collision handling in my implementation is based on impact zone optimiza-

tion [74]. It finds all colliding instances using continuous collision detection (Sec. 3.3.4)

and sets up the constraints for all collisions. In order to introduce minimum change

to the original mesh state, I develop a QP problem to solve for the constraints. Since

the signed distance function is linear in x, the optimization takes a quadratic form:

minimize
z

1

2
(z� x)>W(z� x) (3.15)

subject to Gz+ h 0 (3.16)

where W is a constant diagonal weight matrix related to the mass of each vertex,

and G and h are constraint parameters. I further denote the number of variables

and constraints by n and m, i.e. x 2 Rn, h 2 Rm, and G 2 Rm⇥n. Note that this

optimization is a function with inputs x, G, and h, and output z. My goal here is

to derive @L
@x ,

@L
@G , and @L

@h given @L
@z , where L refers to the loss function.

When computing the gradient using implicit di↵erentiation [97], the dimen-

sionality of the linear system (Equation 3.20) can be too high. My key observation

here is that n >>m > rank(G), since one contact often involves 4 vertices (thus 12

variables) and some contacts may be linearly dependent (e.g . multiple adjacent col-

lision pairs). OptNet [97] solves a linear equation of size m+ n, which is more than

necessary. I introduce a simpler and more e�cient algorithm below to minimize the

57

size of the linear equation.

3.3.5.1 QR Decomposition

To make things simpler, I assume that G is of full rank in this section. At

global minimum z⇤ and �⇤ of the Lagrangian, the following holds for stationarity

and complementary slackness conditions:

Wz⇤ �Wx+G>�⇤ = 0 (3.17)

D(�⇤)(Gz⇤ + h) = 0, (3.18)

with their implicit di↵erentiation as

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

2

664
@z

@�

3

775 =

2

664
W@x� @G>�⇤

�D(�⇤)(@Gz⇤ + @h)

3

775 , (3.19)

where D() transforms a vector to a diagonal matrix. Using similar derivation to

Sec. 3.3.3, solving the equation

2

664
W G>D(�⇤)

G D(Gz⇤ + h)

3

775

2

664
dz

d�

3

775 =

2

664

@L
@z

>

0

3

775 (3.20)

58

can provide the desired gradient:

@L
@x

= dT

zW (3.21)

@L
@G

= �D(�⇤)d�z
⇤> � �⇤d>

z (3.22)

@L
@h

= �dT

�
D(�⇤). (3.23)

(See Sec. 3.3.6.2 for the derivation.) However, as mentioned before, directly solving

Equation 3.20 may be computationally expensive in my case. I show that by per-

forming a QR decomposition, the solution can be derived without solving a large

system.

Figure 3.1: Impact of perturbation. A small perturbation of the target position will
cause the final result to move along the constraint surface.

To further reduce computation, I assume that no constraint is ‘over-satisfied’,

i.e. Gz⇤ + h = 0. I will remove these assumptions later in Sec. 3.3.5.2. I compute

the QR decomposition of
p
W

�1
G>:

p
W

�1
G> = QR. (3.24)

59

The solution of Equation 3.20 can be expressed as

dz =
p
W

�1
(I�QQ>)

p
W

�1@L
@z

>
(3.25)

d� = D(�⇤)�1R�1Q>
p
W

�1@L
@z

>
, (3.26)

where
p
W

�1
is the inverse of the square root of a diagonal matrix. The result

above can be verified by substitution in Equation 3.20.

The intuition behind Equation 3.25 is as follows. When perturbing the original

point x in an optimization, the resulting displacement of z will be moving along the

surface of Gx + h = 0, which will become perpendicular to the normal when the

perturbation is small. (Fig. 3.1 illustrates this idea in two dimensions.) This is

where the term I � QQ> comes from. Note that
p
W

�1
G> is an n⇥m matrix,

where n >>m and the QR decomposition will only take O(nm2) time, compared to

O((n+m)3) in the original dense linear solve. After that I will need to solve a linear

system in Equation 3.26, but it is more e�cient than solving Equation 3.20 since

it is only of size m, and R is an upper-triangular matrix. In my collision response

case, where n 12m, my method can provide up to 183x acceleration in theory.

The speed-up in my experiments (Sec. 3.4) ranges from 60x to 130x for large linear

systems.

3.3.5.2 Low-rank Constraints

The algorithm above cannot be directly applied when G is low-rank, or when

some constraint is not at boundary. This will causeR or D(�⇤) to be singular. I now

60

show that the singularity can be avoided via small modifications to the algorithm.

First, if �k = 0 for the kth constraint then d�k doesn’t matter. This is because

the final result contains only components of D(�⇤)d� but not d� alone, as shown

in Equations 3.22 and 3.23. Intuitively, if the constraint is over-satisfied, then

perturbing the parameters of that constraint will not have impact on z. Based on

this observation, I can remove the constraints in G when their corresponding � is 0.

Next, if G is of rank k, where k < m, then I can rewrite Equation 3.24 as

p
W

�1
G> = Q1[R1 R2], (3.27)

where Q1 2 Rn⇥k, R1 2 Rk⇥k, and R2 2 Rk⇥(m�k). Getting rid of R2 (i.e. removing

those constraints from the beginning) does not a↵ect the optimization result, but

may change � so that the computed gradients are incorrect. Therefore, I need to

transfer the Lagrange multipliers to the linearly independent terms first:

�1 �1 +R�1
1 R2�2, (3.28)

where �1 and �2 are the Lagrange multipliers corresponding to the constraints on

R1 and R2.

61

3.3.6 Derivations of the Gradient Computation

3.3.6.1 Proof of Equation 3.9

I now show that @L
@M̂

= �daz>. For convenience of expression, I split the

matrix M̂ into elements {M̂i,j}. Setting irrelevant variables to zero, I obtain from

Equation 3.8 that:

M̂@a = �@M̂z =

0

BBBBBB@

0

�@M̂i,jzj

0

1

CCCCCCA
(3.29)

Hence, I have:

@a

@M̂i,j

= M̂†

0

BBBBBB@

0

�zj

0

1

CCCCCCA
(3.30)

Similar to Equation 3.11, I arrive at:

@L
@M̂i,j

=
@L
@a

· @a

@M̂i,j

= d>
a M̂ · M̂†

0

BBBBBB@

0

�zj

0

1

CCCCCCA
= �daizj (3.31)

62

Combining all elements in M̂ together I have:

@L
@M̂

= �daz
> (3.32)

3.3.6.2 Proof of Equation 3.20-3.23

Let ẑ =

z �

�>
. Using Equation 3.19 I have:

@ẑ

@x
=

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

† 2

664
W

0

3

775 (3.33)

@ẑ

@h
=

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

† 2

664
0

�D(�⇤)

3

775 (3.34)

Then, the chain rule can yield the results as:

@L
@x

=
@L
@ẑ

· @ẑ
@x

(3.35)

=

d>
z d>

�

�
2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775 ·

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

† 2

664
W

0

3

775

(3.36)

= d>
z W (3.37)

63

@L
@h

=
@L
@ẑ

· @ẑ
@h

(3.38)

=

d>
z d>

�

�
2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775 ·

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

† 2

664
0

�D(�⇤)

3

775

(3.39)

= �d>
�
D(�⇤) (3.40)

Similarly as Sec. 3.3.6.1, I split the matrix G into elements {Gi,j}. From Equa-

tion 3.19 I have:

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775 @ẑ =

2

664
�@G>�⇤

�D(�⇤)@Gz⇤

3

775 =

2

666666666666664

0

�@Gi,j�⇤
i

0

��⇤
i
@Gi,jz⇤j

0

3

777777777777775

(3.41)

which indicates that:

@ẑ

@Gi,j

=

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

†

2

666666666666664

0

��⇤
i

0

��⇤
i
z⇤
j

0

3

777777777777775

(3.42)

64

So the chain rule gives:

@L
@Gi,j

=
@L
@ẑ

· @ẑ

@Gi,j

(3.43)

=

d>
z d>

�

�
2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775 ·

2

664
W G>

D(�⇤)G D(Gz⇤ + h)

3

775

†

2

666666666666664

0

��⇤
i

0

��⇤
i
z⇤
j

0

3

777777777777775

(3.44)

= �dzj�
⇤
i
� d�i�

⇤
i
z⇤
j

(3.45)

Combining all elements in G together, I have:

@L
@G

= ��⇤d>
z �D(�⇤)d�z

⇤> (3.46)

3.4 Experiments

I conduct three experiments to showcase the power of di↵erentiable cloth sim-

ulation. First, I use an ablation study to quantify the performance gained by using

my method to compute the gradient. Next, I use the computed gradient to optimize

the physical parameters of cloth. Lastly, I demonstrate the ability to control cloth

motion.

65

3.4.1 Ablation Study

As mentioned in Sec. 3.3.5.1, my method for computing the gradients of the

optimization can achieve a speed-up of up to 183x in theory. I conduct an ablation

study to verify this estimate in practice. In order to clearly measure the timing

di↵erence, I design a scenario with many collisions. I put a piece of cloth into an

upside-down square pyramid, so that the cloth is forced to fold, come into frequent

contact with the pyramid, and collide with itself, as shown in Fig. 3.2.

Figure 3.2: Example frame from

the ablation study. A piece of

cloth is crumpled inside a square

pyramid, so as to generate a large

number of collisions.

I measure the running time of backpropa-

gation in each quadratic optimization and also

the running time of the physics solve as a ref-

erence. With all other variables fixed, I com-

pare to the baseline method where the gradients

are computed by directly solving Equation 3.20.

Timings are listed in Tab. 3.1. In this experi-

ment, the backpropagation of the physics solve

takes from 0.007s to 0.5s, which, together with

the timings of the baseline, implies that the collision handling step is the critical

bottleneck when there are many collisions in the scene. The results in Tab. 3.1

show that my proposed method can significantly decrease the matrix size required

for computation and thus the actual running time, resolving the bottleneck in back-

propagation.

The experimental results also match well with the theory in Sec. 3.3.5. Each

66

collision involves a vertex-face or edge-edge pair, which both have 4 vertices and 12

variables. Therefore, the original matrix size (n + m = 13m) should be about 13

times bigger than in my method (m). In my experiment, the ratio of the matrix

size is indeed close to 13. Possible reasons for the ratio not being exactly 13 include

(a) multiple collision pairs that share the same vertex, making n smaller, and (b)

the constraint matrix can be of low rank, as described in Sec. 3.3.5.2, making the

e↵ective m smaller in practice.

Mesh

resolution

Baseline Mine Speedup

Matrix size Runtime (s) Matrix size Runtime (s) Matrix size Runtime

16x16 599± 76 0.33± 0.13 66± 26 0.013± 0.0019 8.9 25

32x32 1326± 23 1.2± 0.10 97± 24 0.011± 0.0023 13 112

64x64 2024± 274 4.6± 0.33 242± 47 0.072± 0.011 8.3 64

Table 3.1: Statistics of the backward propagation with and without my method
for various mesh resolutions. I report the average values in each cell with the cor-
responding standard deviations. By using my method, the runtime of gradient
computation is reduced by up to two orders of magnitude.

3.4.2 Material Estimation

In this experiment, my aim is to learn the material parameters of cloth from

observation. The scene features a piece of cloth hanging under gravity and subjected

to a constant wind force, as shown in Fig. 3.3. I use the material model from Wang

et al . [93]. It consists of three parts: density d, stretching sti↵ness S, and bending

sti↵ness B. The stretching sti↵ness quantifies how large the reaction force will be

when the cloth is stretched out; the bending sti↵ness models how easily the cloth

can be bent and folded.

I used the real-world dataset from Wang et al . [93], which consists of 10 dif-

67

ferent cloth materials. There are in total 50 frames of simulated data. The first 25

frames are taken as input and all 50 frames are used to measure accuracy. This is

a case-by-case optimization problem. My goal is to fit the observed data in each

sequence as well as possible, with no “training set” used for training.

In my optimization setup, I use SGD with learning rate ranging from 0.01

to 0.1 and momentum from 0.9 to 0.99, depending on the convergence speed. The

initial guess is the set of average values across all materials. I define the loss as

the average MSE across all frames. In order to speed up optimization, I gradually

increase the number of frames used. Specifically, I first optimize the parameters

using only 1 simulated frame. I proceed to the second frame after the loss decreases

to a certain threshold. This optimization scheme can help obtain a relatively good

guess before additional frames are involved.

Figure 3.3: Example

frame from the material

estimation scene for cloth

blowing in the wind.

As a simple baseline, I measure the total external

force and divide it by the observed acceleration to com-

pute the density. For the stretching sti↵ness, I simplify

the model to an isotropic one and record the maximum

deformation magnitude along the vertical axis. Since the

e↵ect of the bending sti↵ness is too subtle to observe, I

directly use the averaged value as my prior. I also com-

pare my method with the L-BFGS optimization by Wang

et al . [93] using finite di↵erence. I used the PyTorch L-

BFGS implementation and set the learning rate ranging from 0.1 to 0.2 depending

on the convergence speed.

68

For the performance measurement, I use the Frobenius norm normalized by

the target as the metric for the material parameters:

E(P) =
kP�P0kF
kP0kF

, (3.47)

where P and P0 are the estimated and the target physics parameters, which stand

for either density d, stretching sti↵ness S, or bending sti↵ness B. In order to show

the final visual e↵ect, I also measure the average distance of the vertices between the

estimated one and the target normalized by the size of the cloth as another metric:

E(X) =
1

nTL

X

1iT,1jn

kXi,j �Yi,jk2, (3.48)

where L is the size of the cloth, and X and Y are T⇥n⇥3 matrices denoting the n

simulated vertex positions across T frames using the estimated parameter and the

target, respectively.

Tab. 3.2 shows the estimation result. I achieve a much smaller error in most

measurements in comparison to the baselines. The reason the sti↵ness matrices

do not have low error is that (a) a large part of them describes the nonlinear stress

behavior that needs a large deformation of the cloth and is not commonly observed in

my environment, (b) di↵erent sti↵ness values can sometimes provide similar results,

and (c) the bending force for common cloth materials is too small compared to

gravity and the wind forces to make an impact. The table shows that the linear

part of the sti↵ness matrix is optimized well. With the computed gradient using

69

my model, one can e↵ectively optimize the unknown parameters that dominate the

cloth movement to fit the observed data.

Compared with regular simulators, my simulator is designed to be embedded

in deep networks. When gradients are needed, my simulator shows significant im-

provement over finite-di↵erence methods, as shown in Tab. 3.2. Regular simulators

need to run one simulation for each input variable to compute the gradient, while

my method only needs to run once for all gradients to be computed. Therefore, the

more input variables there are during learning, the greater the performance gain

that can be achieved by my method over finite-di↵erence methods.

Method
Runtime

(sec/step/iter)

Density

error (%)

Non-ln streching

sti↵ness error (%)

Ln streching

sti↵ness error (%)

Bending sti↵ness

error (%)

Simulation

error (%)

Baseline - 68 ± 46 74 ± 23 160 ± 119 70 ± 42 12 ± 3.0

L-BFGS [93] 2.89 ± 0.02 4.2 ± 5.6 64 ± 34 72 ± 90 70 ± 43 4.9 ± 3.3

Mine 2.03 ± 0.06 1.8 ± 2.0 57 ± 29 45 ± 41 77 ± 36 1.6 ± 1.4

Table 3.2: Results on the material parameter estimation task. Lower is better. ‘Ln’
stands for ‘linear’. Values of the material parameters are the Frobenius norms of the
di↵erence normalized by the Frobenius norm of the target. Values of the simulated
result are the average pairwise vertex distance normalized by the size of the cloth.
My gradient-based method yields much smaller error than the baselines.

Figure 3.4: Example frame from the motion control experiment: dropping cloth into
a basket.

70

3.4.3 Motion Control

I further demonstrate the power of my di↵erentiable simulator by optimizing

control parameters for motion control of cloth. The intended task is to drop a piece

of cloth into a basket, as shown in Fig. 3.4. The cloth is originally placed on a table

that is away from the basket. The system then applies external forces to the corners

of the cloth to lift it and drop it into the basket. The external force is applied for 3

seconds and can be changed during this period. The basket is a box with an open

top. A planar obstacle is placed between the cloth and the basket to increase the

di�culty of the task.

The initial control force is set to zero. The control network consists of two FC

layers, where the input (size 81⇥2⇥3) is the position and velocity of each vertex,

the hidden layer is of size 200, and the output is the control force (size 4⇥3). The

learning rate is 10�4 and the momentum is 0.5. The reported result is the best

among 10 trials.

I define the loss here as the squared distance between the center of mass of

the cloth and the bottom of the basket. To demonstrate the ability to embed the

simulator into neural networks, I also couple my simulator with a two-layer fully-

connected (FC) network that takes the mesh states as input and outputs the control

forces. My methods here are compared to two baselines. One of the baselines is a

simple method that computes the momentum needed at every time step. The entire

cloth is treated as a point mass and an external force is computed at each time

step to control the point mass towards the goal. Obstacles are simply neglected

71

in this method. The other baseline is the PPO algorithm, as implemented in Ray

RLlib [98]. The reward function is defined as the negative of the distance of the

center of mass of the cloth to the bottom of the basket.

Method Error (%) Samples

Point mass 111 –
PPO [98] 432 10,000
Mine 17 53
Mine+FC 39 108

Table 3.3: Motion control results. The table reports the smallest distance to the
target position, normalized by the size of the cloth, and the number of samples used
during training.

Tab. 3.3 shows the performance of the di↵erent methods and their sample

complexity. The error shown in the table is the distance defined above normalized

by the size of the cloth. My method achieves the best performance with a much

smaller number of simulation steps. The bottom of the basket in my setting has

the same size as the cloth, so a normalized error of less than 50%, as my methods

achieve, implies that the cloth is successfully dropped into the basket.

Figure 3.5: A motion control scene with more obstacles. The cloth needs to drop
down and slide through the slopes to get to the target position.

72

3.4.4 Collision-rich Motion Control

I here demonstrate an example of motion control application with richer col-

lisions. As shown in Figure 3.5, there is a series of obstacles above the basket that

preclude the cloth from falling directly into it. The variable settings are the same as

described in Sec. 3.4.3. My di↵erentiable simulation provides the task with correct

gradients so that the cloth is deposited into the basket.

3.5 Conclusion

I presented a di↵erentiable cloth simulator that can compute the analytical

gradient of the simulation function with respect to the input parameters. I used dy-

namic collision handling and explicitly derived its gradient. Implicit di↵erentiation

is used in computing gradients of the linear solver and collision response. Exper-

iments have demonstrated that my method accelerates backpropagation by up to

two orders of magnitude.

I have demonstrated the potential of di↵erentiable cloth simulation in two

application scenarios: material estimation and motion control. By making use of

the gradients from the physically-aware simulation, my method can optimize the

unknown parameters faster and more accurately than gradient-free baselines. Using

di↵erentiable simulation, I can learn the intrinsic properties of cloth from observa-

tion.

One limitation of my existing implementation is that the current simulation

architecture is not optimized for large-scale vectorized operations, which introduces

73

some overhead. This can be addressed by a specialized, optimized simulation system

based solely on tensor operations.

This work has been published in the conference proceedings of Neural Infor-

mation Processing Systems (NeurIPS) 2019.

74

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Learning-Based Human Body and Garment Estimation
	Differentiable Simulation for Material Optimization
	Simulation-Based Virtual Try-On
	Thesis Statement
	Main Results
	Shape-Aware Human Reconstruction Using Multi-View Images
	Differentiable Simulation for Material Optimization
	Joint Estimation of Human and Garment from Video
	Time-Domain Parallelization for Accelerating Cloth Simulation
	Dynamics-Inspired Garment Draping Prediction

	Outline of Dissertation

	Shape-Aware Human Reconstruction Using Multi-View Images
	Introduction
	Related Work
	Human Body Pose and Shape Recovering
	Learning-Based Pose/Shape Estimations
	Use of Synthetic Dataset

	Overview
	Model Architecture
	3D Body Representation
	Scalable Multi-View Framework
	Training and Inferring
	Implementation Details

	Data Preparation
	Parameter Space Sampling
	Human Body Motion Synthesis
	Cloth Registration and Simulation
	Multi-View Rendering

	Results
	Ablation Study
	Comparisons with Multi-View Methods
	Real-World Evaluations
	Multi-View Input in Daily Life
	Extra Test Results
	Additional Results on Real-World Images
	Comparison on Human3.6M with Single-View Methods
	Results Without Training on Synthetic Data
	Detailed Errors on Real World Evaluation
	Evaluation on 3D People in the Wild.
	Running Time

	Conclusion and Future Work

	Differentiable Simulation for Material Optimization
	Introduction
	Related Work
	Differentiable Cloth Simulation
	Cloth Simulation Basics
	Overview
	Derivatives of the Physics Solve
	Dynamic Collision Detection and Response
	Derivatives of the Collision Response
	Derivations of the Gradient Computation

	Experiments
	Ablation Study
	Material Estimation
	Motion Control
	Collision-rich Motion Control

	Conclusion

	Joint Estimation of Human and Garment from Video
	Introduction
	Related Work
	Method Overview
	Garment Auto-encoder
	Two-Level Encoder-Decoder Structure
	Representative Point Set Extraction
	Training Losses
	Recovery from Point Clouds to Garment Meshes

	Material Estimation
	Single Frame Closed-Loop Estimation
	Temporal Estimation for Garment Material

	Data Preparation and Training
	Training Details

	Experiments
	Quantitative Analysis
	Qualitative Results
	Lab Experiments and User Study
	Ablation Study
	Latent Code Interpolation
	Additional Qualitative Results
	Application: Virtual Try-On

	Conclusion

	Time-Domain Parallelization for Accelerating Cloth Simulation
	Introduction
	Related Work
	Cloth Simulation
	Time Parallel Time Integration Method
	Parallel Cloth Simulation
	Hierarchical Structures and Multi-level Methods
	Mesh Upsampling

	Overview
	Two-Level Mesh Hierarchy Representation

	Time Domain Parallelization
	Static Temporal Partitioning
	Adaptive Partitioning
	Analysis on Performance Scalability

	Smooth State Transitioning
	Iterative Detail Recovery
	Convergence and Continuity
	Proof of Convergence of Algorithm 3
	Iteration Number Estimation
	Implementation Details
	State Inconsistency

	Results
	Parameter and Scenario Setting
	Performance
	Smoothness
	Memory and Render Latency
	Limitations

	Conclusion and Future Work

	Dynamics-Inspired Garment Draping Prediction
	Introduction
	Related Work
	Method
	Encoder
	GCN-Based Decoder
	Spectral Domain Decomposition
	Loss Functions

	Physics-Enforced Optimization
	Experiments
	Data Generation
	Ablation Study
	Optimization for Semi-Supervision
	Optimization for Graphic Print
	Quantitative Comparisons
	Qualitative Results
	Generalization to Different Garment Sizes

	Conclusion

	Conclusion
	Summary of Results
	Limitations
	Future Work

