
Chapter 4: Joint Estimation of Human and Garment from Video

4.1 Introduction

Chapter 2 and 3 introduce novel methods to estimate the human body and

garment material independently. It is not di�cult to observe that the two tasks are

closely related. Jointly estimating both in an end-to-end system can help remov-

ing certain ambiguity originating from the input image. Moreover, estimating the

garment materials of a worn garment is a more challenging task than what Chapter

3 introduces; it does not assume known external forces or even garment geometry,

making di↵erentiable physics not applicable under such a circumstance.

In this chapter, I introduce an end-to-end learning model that achieves both

garment geometry estimation and fabric material prediction at the same time. To

handle the dynamic geometry and di↵erent topologies of the garments and to pro-

vide a unified parametric model for the garments, I propose a two-level auto-encoder

network. The key observation is that classical point cloud encoders such as Point-

Net [99] are great for capturing global shapes, but not suitable for encoding the

local details. Multi-scale feature extraction not only decomposes the problem into

smaller partitions, but also decouples global and local features to enable larger cov-

erage on local shape learning. It is also critical to construct a continuous space that
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includes di↵erent topological structures, since topology transitions often happen lo-

cally. During the estimation, I couple the human body inference with the garment

recovery to maximize the estimation accuracy of the two correlated tasks. Other

than traditional multi-tasking, I further introduce a closed-loop structure so that

the garment features of di↵erent scales can guide the body estimation to improve

the accuracy for both. Based on the temporal change of these garment features, I

can then perform accurate material classification accordingly. To sum up, my key

contributions include:

• The first end-to-end neural network that recovers fabric material(s) of a gar-

ment from one single RGB video (Section 4.3);

• A novel two-level auto-encoder for learning the latent space of garments through

multi-scale feature coupling (Section 4.4);

• Joint estimation of human body and apparels through a close-loop iterative

optimization (Section 4.5);

• A large dataset of garment motion sequences with wide variations of human

body, fabric materials, textures, and lightings (Section 4.6);

• The first garment prediction model that can account for arbitrary topologies

and use a feedback loop to the body estimation for prediction consistency

(Section 4.7).

My experiments show that the proposed network structure e↵ectively increases the

capability and accuracy of the fabric material estimation. By using only a few frames
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of a person wearing a garment, my model can faithfully reconstruct the garment

fabric material(s), using the recovered shape and motion of both the garment and

the human body as the conditioning in the material estimation task.

4.2 Related Work

Fabric material estimation. Researchers have been tackling di↵erent inverse

problems, including inverse cloth design [100], combinatorial material design [101],

BRDF parameter capturing [102], weaving pattern reconstruction [103], human ma-

terial perception [104, 105], and frictional coe�cient estimation [106, 107]. As a

typical example of inverse problems, physical material estimation is a challenging

yet important component of scene understanding. Cloth material estimation is even

more challenging than most due to its highly dynamic motions. Previous works

study the task in a simplified and constrained scenario, and recover the materials

using statistical observation [108, 109], optimization [110, 111], or learning [21, 112].

In contrast, my method learns the cloth material from videos of a human wearing

garments, which is more general and widely applicable. More importantly, my

method makes use of the estimated multi-scale garment latent codes as input sig-

nal as well, which is shown to be much more useful in recovering overall garment

geometry with local details than the traditional image features.

Garment modeling and estimation. Garment geometry capturing or recov-

ery has been studied in computer graphics and computer vision. To address this

problem, non-learning methods employ symmetry with user input [113], optimiza-
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tion [110, 114], or binocular data [115]. Recently, methods using deep learning have

been proposed for faster speed and more convenient usage [8, 10, 11, 12, 116, 117,

118, 119, 120, 121, 122]. In addition, direct garment modeling methods have also

been proposed using spherical parameterization [7] for estimation or displacement

map [123] for retargetting.

Di↵erent from displacement-based cloth representation [10], PCA-based mod-

els [9], and mesh-CNN-based methods [8], my garment model is universal to all

topologies, applicable to those not homotopy to human surfaces (e.g . long dresses),

and enabling semantic interpolation between di↵erent garments. Compared with

[7], my model generates a stand-alone garment mesh, which is easy to export and

retarget. More importantly, my method is the first end-to-end network that jointly

estimates the garment material together with its geometry.

This method focuses on the material estimation of garments. Without any

prior knowledge, I take an RGB video as input and recover the garment mesh, which

is then used for fabric material estimation. My method is substantially di↵erent from

most garment capturing or generation methods [90, 122, 124] regarding model input,

output, and assumptions.

Point cloud encoder and decoder. PointNet [99] was among the first network

model for encoding an unordered point set. Follow-on improvements include spatial

partition [125, 126, 127], edge convolution [128], local region filtering [129, 130], and

analogous convolutional operators [131].

Although these recent works have utilized hierarchical structure to some ex-
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tent, their methods are not su�cient for auto-encoding the garment geometry or

topology. The key di↵erence between garment auto-encoding and rigid gadgets

auto-encoding is that there are a large number of local details (e.g . wrinkles) due

to cloth’s highly deformable and dynamical nature. As a result, latent codes for

local details are necessary. Methods using random sampling [131] or farthest point

sampling [127] propose unstable representative points for similar input, thus not

suitable for local feature encoding. [131] used a stabilized version of self-organized

mapping (SOM) for representative point generation, but did not further encode the

local features. So this method [131] is still a single-level auto-encoder.

In contrast, my two-level auto-encoder for garments successfully encodes local

features, while capturing the global geometry. The trained latent code maintains

similarity between similar input point clouds – otherwise not achievable using un-

stable representative points in prior works.

Human reconstruction from images. Human estimation using RGB images

has been a popular research topic in deep learning for its importance in virtual

reality and computer animation. While early works propose network models for

only 2D/3D body skeletons [31, 132, 133], more recent works introduce techniques

to regress the entire human body – either using a parametric human model [2, 3]

or voxel-based representation [4, 5, 6]. Given the fact that the annotations in most

real-world datasets contain only joint positions, the learning process has been refined

in various ways [68, 134, 135, 136, 137].

In order to estimate the fabric material, I need to recover the garment shape
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on the human body, which is an important problem rarely addressed in human

estimation tasks. In my pipeline, I use state-of-the-art human body predictions as

a strong prior for the garment estimation module. Given the focus of this paper,

I use video input solely for garment material estimation. Thereby, I do not review

related works on video-based pose estimation here. Instead, I refer the interested

readers to a recent survey [138].

4.3 Method Overview

I first give the formal problem definition below. Given a video clip showing a

person moving (e.g . walking, jumping, bending, etc), I estimate the fabric materials

of the garment worn by the person. By fabric materials, I refer to the physical

material parameters used in cloth simulation. I adopt the same material parameter

definition introduced in [93], which consists of 24 parameters for stretching sti↵ness

and 15 parameters for bending sti↵ness.

Due to the fact that the di↵erences of the material parameter values do not

intuitively reflect the human visual perception, I follow the previous work [21] to

discretize the material parameter space based on the amount of deformations due to

external forces. Using sensitivity analysis [139], the stretching sti↵ness is split into

6 classes and 9 for the bending. Combining both dimensions will yield 54 di↵erent

material classes. As confirmed by [21], these 54 classes cover most of the common

materials, including polyester, cotton, nylon, rayon, and their combinations. For

example, one type of materials named ‘white-swim-solid’ consisting of 87% nylon
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and 13% spandex, as measured by [93], fits in the discrete classification model with

the stretching label of 2 and the bending label of 3.

In this paper, I introduce an end-to-end deep neural network (Fig. 4.1) for

simultaneously estimating the garment geometry and its material type(s), along

with the human body. My key idea is that image features are not su�cient for

inferring garment materials; it is necessary to extract the garment geometry as

well for a more accurate estimation. To support di↵erent topologies of garments, I

choose point clouds for its geometry representation. To better account for the highly

dynamic garment surfaces, I train a two-level point cloud auto-encoder (Sec. 4.4) so

that it can learn the global shapes and local features of the garment to reduce the

total number of degrees of freedom. I use the SMPL model (see [30] for its rigorous

math definition) to represent the human pose and shape.

Figure 4.1: Overall network structure. Given an RGB video, I extract its image
features and estimate the body and garment shape frame by frame (Sec. 4.5.1). The
latter is decoded to obtain a garment mesh (Sec. 4.4). The temporal sequences of
image and garment are fed to an LSTM for material classification (Sec. 4.5.2).

I divide the estimation pipeline into two phases. First, I estimate the human

body and the cloth geometry in a frame-by-frame manner (Sec. 4.5.1). A closed-

loop optimization structure is used to improve the estimation accuracy of these

two correlated tasks. The garment geometry prediction module is conditioned on
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the human body parameters, and at the same time provides corrective feedback to

the human body prediction module. I then feed the features of the image and the

garment geometry from each frame together to a temporal neural network for the

garment material estimation (Sec. 4.5.2). By sharing common features, providing

corrective feedback, and conditioning on outputs of closely-related tasks, my network

model can achieve higher estimation accuracy on all three tasks than independent

estimation baselines.

4.4 Garment Auto-encoder

I first set up an auto-encoder for the cloth model. Since the model is designed

Figure 4.2: The network structure of the garment auto-encoder. The point
cloud sampled from the original mesh is first fed to a global PointNet for coarse shape
features. Its representative point set is then obtained by decoding the global features
from an AtlasNet. From those points, I sample the local patches using K-nearest
neighbor and pass them to a local PointNet for detailed shape features. The local
decoder is then conditioned on the global latent code and the corresponding patch
center to recover the patches that are stitched together to form the reconstructed
point cloud.

not to assume fixed garment topology, I choose to use point clouds as the underlying

representation. Other representations, such as graph-based [140] or displacement-

based [10, 11], rely on either fixed graph structure, or fixed human surface, thus not

applicable for generalization to di↵erent garments. The use of auto-encoder here is
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necessary because the degrees of freedom (DoF) for point clouds are too high for

estimation. An encoder-decoder structure can e↵ectively reduce the DoF and retain

only the essential information, such as the global shape and the local details. More

importantly, it clusters similar shapes to similar latent codes, which is beneficial to

the estimation module. As later shown in the Appendix, my model provides smooth

transitioning between di↵erent topologies by using simple interpolation between

latent codes, which is never achieved in previous works.

4.4.1 Two-Level Encoder-Decoder Structure

Previous point cloud auto-encoders such as AtlasNet [141] use Multi Layer

Perceptron (MLP) to transform a 2D patch to a set of 3D points in the space. Their

method performs well in point cloud datasets that include rigid objects, such as

airplanes or chairs, since the deformations presented in those objects are simple and

regular. However, it cannot be directly applied to learn garment point clouds, since

garments have a much larger variance in point cloud distribution due to its dynamic

nature. For example, a simple dress can create di↵erent wrinkle structures under

di↵erent external forces. As a result, one global auto-encoder cannot account for

all detailed structures, resulting in overly smoothed point clouds. Recently, [142]

proposes a method to resolve patch overlapping and collapsing occurred in AtlasNet,

but it still cannot account for arbitrary topologies and detailed wrinkles.

I propose a two-level auto-encoder for learning the latent space of the cloth.

As shown in Fig. 4.2, I use a set of representative points C to express the global
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shape of the garment, and sample around them to form local patches, which are

encoded independently to account for local shapes. Specifically, given a point cloud

P, I first pass it through a global auto-encoder to form a representative point cloud:

C = Dg(Eg(P), ✓) (4.1)

where Eg and Dg are the global encoder and decoder, and ✓ is the human body pa-

rameter. Next, I use K-nearest-neighbor to sample points around the representative

ones:

Pi = KNN(P, ci) (4.2)

where ci is the i-th element in C, and Pi is the i-th patch. This step forms local

patches around the representative points. Finally, I pass each patch to the shared

local auto-encoder, and do a union operation to obtain the reconstructed point

cloud:

Qi = Dl(El(Pi), zg, ci) (4.3)

Q =
[

i

Qi (4.4)

where Qi and Q are the reconstructed patches and point cloud, Dl and El are the

local decoder and encoder, and zg = Eg(P) is the global latent code.
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4.4.2 Representative Point Set Extraction

Note that Eq. 4.3 and 4.4 imply that the representative points C have to be

in the same order as the local latent codes zl. This is the key reason why traditional

methods such as farthest point sampling [127] do not work: its ordering is very

sensitive to the input, resulting in an unknown mapping between reconstructed

patch centers C and the local patches Pi (thus the local latent code zli).

To resolve this issue, I encode the entire point cloud and compute the rep-

resentative points using the decoder itself. Due to the continuous nature of the

auto-encoder network, the continuity and consistency regarding similar point clouds

are guaranteed, thus ensuring ci to be exactly matched with Pi.

4.4.3 Training Losses

During training, I use Chamfer Distance between two point clouds as the loss:

d(P,Q) =
1

|P|
X

p2P

min
q2Q

kp� qk+ 1

|Q|
X

q2Q

min
p2P

kq� pk (4.5)

I apply the Chamfer Distance loss between the representative point set and the point

cloud to learn the global shape, and the one between the recovered and the original

point cloud, both patch-wisely and globally, to capture the local details:

LAE = d(P,C) +
1

n

nX

i=1

d(Pi,Qi) + d(P,Q) (4.6)
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4.4.4 Recovery from Point Clouds to Garment Meshes

The point cloud representation of a garment mesh does not explicitly store the

connectivity information, so it is necessary to apply certain prior when recovering

meshes from point clouds. One straightforward way is to connect each point with

its neighbors, determined by a distance threshold. However, this method does not

guarantee the resulting mesh to be a manifold. Instead, I use manifold surfaces to

approximate the results.

The overall pipeline to recover point clouds to meshes is split into several steps.

I first employ Screen Poisson algorithm [143] on the point cloud with estimated

normals using neighboring points to recover the overall shape and topology of the

garment. Next, I remove the reconstructed vertices that are too far away from the

point cloud, since the first step tends to generate water-tight meshes. I focus on

removing large clusters that forms holes for neck, arms, and legs. After upsampling

on the resulting mesh, I deform the mesh by minimizing the distance dM(P,F)

between the point cloud P and the mesh F as defined below:

dM(P,F) =
1

|P|
X

p2P

min
f2F

d̂(p, f) +
1

|F|
X

f2F

min
p2P

d̂(p, f) (4.7)

where d̂ is the point-to-face distance, f 2 F is a face in the garment mesh, F is the

set of all faces of the mesh. I use other regularization terms similar to the mesh

deformation demo in Pytorch3D [144].
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4.5 Material Estimation

With the garment auto-encoder (Sec. 4.4) at hand, garment material estima-

tion becomes tractable. I design my overall pipeline as shown in Fig. 4.3. Given the

sequence of image frames, I first feed them one by one to a model for estimating

the human body and cloth geometry. By predicting the latent vector instead of

the exact positions of the point cloud, the single-frame estimation network avoids

severe overfitting or producing irrational results, due to the reduction of the degree

of freedom by the auto-encoder.

Next, I combine the image features as well as the estimated garment latent

code as the temporal signals, which go through a canonical temporal network module

(i.e. LSTM [145]) to predict the final material type. Since the latent space preserves

similarity (i.e. positive correlation between distances of latent vectors and distances

between the original point clouds), the motion of the estimated latent vector becomes

a better indicator of garment motion than image features, which is beneficial to

garment material learning. I do not include body features here because the garment

material is directly related to the garment motion, which has already taken the

human body as the condition (Sec. 4.5.1). I discuss more details of the network in

the following sections.

4.5.1 Single Frame Closed-Loop Estimation

As shown in Fig. 4.4, I train a model to estimate the human body and cloth

geometry given one single frame. Formally, in each frame, I am given the image
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Figure 4.3: My estimation pipeline. Each video frame is first processed to obtain
the image feature, the human body, and the garment shape. Then the image fea-
tures are concatenated with the garment latent code as input to LSTM for material
recovery.

(a) Closed loop structure for body & gar-
ment estimation

(b) Detailed structure in the garment esti-
mation block

Figure 4.4: The network structure for body and garment estimation in each
frame. (a) The garment shape estimation block takes the human body parameters
as a prior, but also provides a feedback correction. (b) The garment estimation
module consists of three identical, shared-weight blocks, each of which takes image
features f and current predictions of the human body ✓0 and garment z0, and outputs
the corrective values.

features f . I first go through a state-of-the-art body estimation block, HB, to get a

first-hand body estimation:

✓̂ = HB(f) (4.8)
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where ✓̂ = [✓, �] are the human body parameters including pose and shape. In the

garment estimation block, I take as input f together with ✓̂ and regress the garment

latent code z and a final value of body parameters ✓. Inside the garment estima-

tion block, I use three shared-parameter small regression blocks, RB, to iteratively

provide the correction, given the current estimation:

✓0 = ✓̂ z0 = 0 (4.9)

�✓i,�zi = RB(✓i�1, zi�1) (4.10)

✓i = ✓i�1 +�✓i zi = zi�1 +�zi (4.11)

Overall, the garment estimation block forms a closed-loop structure, in which the

human body parameters are required to predict the garment, and are later corrected

back by the garment prediction as well.

The key insight of my module design is that the human body and garment

shape are highly correlated at di↵erent scales and should be jointly learned us-

ing shared information. On the global scale, the detailed features of the garments

restrict the variance of the human body and reduce ambiguity due to camera pro-

jection. On the local scale, the body pose and shape largely defines the valid distri-

bution of the garment wrinkle positions. My proposed structure is also analogous

to iterative optimization and feedback control in other areas, where two objectives

serve as prior knowledge of each other and are improved iteratively. My work is the

first to introduce this idea to the human and garment joint estimation task.
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The loss function for the single-frame estimation is defined as:

Ls = Lbody + LAE (4.12)

Lbody = L2D + L3D + LSMPL (4.13)

where L2D, L3D, and LSMPL represent the 2D joint loss, the 3D joint loss, and the

body parameter loss defined to supervise the human body estimation [136], and LAE

is the Chamfer distance defined in Eq. 4.6 to supervise the garment estimation.

4.5.2 Temporal Estimation for Garment Material

Garment material estimation is challenging since the visual di↵erence of di↵er-

ent materials is subtle and can easily be overwhelmed by disturbance, e.g . various

directions or magnitudes of external forces. To tackle this problem, previous works

often assume fixed environment settings and cloth shapes [21, 110]. While I follow a

similar principle when training the material estimation module, I go one step further

that I only assume common human motion for driving the garment instead of the

whole external force field. While previous works [21, 110] can only handle videos

of a piece of cloth hanging and dragged by the wind, my method possesses a wider

applicability regarding the diversity of the garment shapes, sizes and human mo-

tions in the input video, which for the first time enables practical usages for garment

material cloning.

As shown in Fig. 4.3, I collect and concatenate the image features and the

estimated garment latent vector of each frame as the input signal, and feed the
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sequence of the signals to LSTM to produce a summary feature. Finally, I pass the

summary feature to a fully-connected layer for material type classification. I use the

cross-entropy loss for supervision.

I train the model in an end-to-end fashion, but deliberately fix the single-frame

estimation module. While my training does not benefit from end-to-end fine-tuning

(which I technically can), it poses an even more challenging task for the temporal

estimation module. No matter how expressive the network is, the training results

will not be great, if the input signal provided by the previous module is noisy. My

experiments demonstrated in Sec. 4.7 indicate that the multi-scale garment features

are not merely useful for detecting the fabric materials; they are the dominant

features during the estimation and can boost the test accuracy compared to methods

that only feed the image features.

4.6 Data Preparation and Training

In order to train my model, a large number of examples that contain ground

truth human body parameters, garment meshes, and the corresponding material

parameters are needed. These are very challenging to capture in real world. To

supplement a very limited number of such real-world videos, I create a large dataset

of videos generated with controlled variables with the corresponding ground-truth

values for validation. I vary di↵erent conditions to generate this dataset:

Human motion. I sample common human motion sequences and shape parameters

in the CMU Mocap dataset [65], including walking, sitting, boxing and climbing
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stairs.

Garment meshes. I use the garment dataset from [146].

Material space. I sample di↵erent materials uniformly in the discretized space

mentioned in Sec. 4.3.

Human and garment textures. I use random human textures from SUR-

REAL [147] and random garment textures from online images.

Lighting. I employ diverse outdoor and indoor environment maps downloaded

from [148].

In total, I create a dataset of 250,000 images (10 motions * 100 garments *

250 frames) for single-frame human and garment geometry estimation, and 140,000

video sequences with each consisting of 25 images sampled at a frame rate of 5.

Some examples of my training datasets are shown in Fig. 4.15.

4.6.1 Training Details

The split percentages for the train/validation/test sets are 85%/5%/10%. Dur-

ing training, I use Adam [149] to minimize the loss. The learning rate is 10�3 for the

auto-encoder, and 10�4 for others. They are scaled down to 10�4 and 10�5 respec-

tively after 10 epochs. All hyper-parameters are chosen empirically. As shown in

Fig. 4.2, I use a representative point set of size 256, and generate 128 points for each

patch. The sampling size for the ground-truth point set (N in Fig. 4.2) is 16,384.

I trained and tested my model on a machine with 8 CPUs (Intel Xeon, 3.60GHz)

for data loading and 2 GPUs for computing (GeForce GTX 1080). I trained my auto-
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encoder, single-frame module, and the temporal module for 20 epochs, respectively.

4.7 Experiments

I demonstrate the performance of my model as follows. (1) To illustrate

my model’s generality and e↵ectiveness quantitatively (Sec. 4.7.1) and qualitatively

(Sec. 4.7.2), I compare the results of my material estimation pipeline with the

baselines and previous works. (2) I conduct a user study to investigate material

perception using this work and quantify the similarity between the measurements

of real-world fabrics from lab experiments and predicted garment materials from

videos (Sec. 4.7.3). (3) I conduct additional comparison with other related learning-

based methods, including ablation studies and latent code for garment interpola-

tion/design, and application to virtual try-on.

4.7.1 Quantitative Analysis

Mine vs. Image-Only [21]. Due to the di↵erence regarding the input dis-

tribution (dressed garment on a human body in my method vs. hanging cloth in

theirs), I re-train their model on my datasets for a fair comparison. I study the

contribution of image-only features vs. garment-only features, as well as CNN vs.

LSTM (that exploits the temporal coherence). Finally, I compare the overall perfor-

mance di↵erence between mine and [21]. The test classification accuracy is reported

in Table 4.1.

Findings: (1) While all three models have learned the relationship between
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motion and materials and all three outperform random guess, the garment feature

signals are shown to be much more important than the image features. This finding

is not surprising, since the garment shape is directly a↵ected by the material. (2)

Combining the two features, as my model does, further improves the test accuracy.

A possible reason is that an overall capturing of the garment shape (e.g . width and

length of the entire piece), which is di�cult to retrieve using garment latent codes,

could be more easily extracted using image features. (3) By exploiting temporal

coherence, unsurprisingly all three versions of the model achieve better accuracy

than only using 1 image.

Method Mean Temporal Garment Features
Accuracy Gain Gain

Random guess 1.85% - -

Image only, CNN 5.11%
40.16%

-
Image only, LSTM [21] 45.27% -

Garment only, CNN 11.85%
53.31%

6.74%
Garment only, LSTM 65.16% 19.89%

Image + Garment, CNN 12.62%
57.52%

7.51%
Image + Garment, LSTM (mine) 70.14% 24.87%

Table 4.1: Comparison on material estimation: my method achieves much
higher accuracy (⇠50%) in classification than [21].

Mine vs. Optimization-based [110]: An optimization-simulation framework

to obtain the fabric material parameters using wrinkle density of the garment in a

single image was proposed in [110]. In contrast, my method extracts both static

image features and spatio-temporal garment features across frames. I generate the

same set of test scenes as shown in Fig. 4.9. My model is tested on these sequences

under varying lighting and visibility conditions; the average accuracy is reported in
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Table 4.2. In this challenging case where the lighting condition and the textures are

not seen in the training distribution, my method still achieves comparable accuracy

with previous method [110], but it runsmore than 1,000x faster. Mine is the first

end-to-end learning-based method to predict fabric materials directly from a video of

garments worn on a human body.

Method
Accuracy (%)

SpeedMid-day Sunset

T-shirt Pants Skirt T-shirt Pants Skirt

[110] 80.2 80.2 83.3 81.6 79.9 80.7 4-6 hours
Mine 86.5 91.6 81.6 82.4 91.6 79.6 8.7s

Table 4.2: Quantitative comparison with [110]. My method achieves compara-
ble or higher accuracy, but runs at least three orders of magnitude faster than
the state-of-the-art [110].

4.7.2 Qualitative Results

I compare mine with the most relevant work of [110] for joint estimation of

garment shapes and materials, as shown in Fig. 4.5. My method achieves similar

reconstruction accuracy and visual quality as [110]. But, [110] uses semantic seg-

mentation, thus su↵ering from tedious manual processing and long inference time.

In contrast, my learning-based method is fully automatic and can compute the pre-

diction in real time. Moreover, my method does not assume the sewing patterns as

a prior.

I further compare with several learning methods [10, 118] in Sec. 4.7.6. Many

often use additional information (e.g . mesh templates or known garment types)

as priors, so direct visual comparison is not meaningful. Nonetheless, my model
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successfully generalizes to unseen real-world images/videos with comparable visual

results, as shown in Fig. 4.13. During these experiments, my method is directly

applied without any fine-tuning or post-optimization. Although trained using syn-

thetic datasets, my model correctly identifies people and the garments from real-

world images, and achieves similar visual results in all examples, when compared

with previous works. The network is also capable of the predicting correct sizes of

garments relative to the body, due to multiscale auto-encoders.

Material Cloning for Virtual Try-On: I show three application scenarios

of my method. In Fig. 4.6, given an RGB video of a person wearing garments

of di↵erent fabric materials, my method can identify the underlying material and

clone it onto other garment models using cloth simulation. My method is the first

to achieve fast and accurate material extraction from videos of dressed garments on

a body. I further show the ability of my method to reconstruct the entire human

appearance from the input video using one single network. I first estimate the body

and the garment geometry frame by frame, and use the temporal information to

infer the material. The three parts are combined using cloth simulation to generate

the final output. Fig. 4.7 and Fig. 4.8 show the reconstruction results (also see the

supplement video). My reconstructed garment shapes and wrinkles match those in

the input video frames.
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(a) Input image (b) Results from [110] (c) My results

Figure 4.5: Qualitative comparison with [110]: Mine is easier to use and
achieves visually comparable reconstruction much faster without priors on garment
patterns and topology.

(a) Soft silk (b) Sti↵ polyester (c) Soft silk (d) Sti↵ polyester
Input videos Estimated materials

Figure 4.6: Material transfer between videos. My method can take videos of a
person wearing any garments (a, b) and clone the underlying fabric materials onto
other simulated garments (c, d).

(a) Real (b) Virtual (c) Real (d) Virtual

Figure 4.7: Qualitative results: my method faithfully recovers the T-shirt mate-
rials (a, c) in video so that the wrinkles around the simulated t-shirt sleeves (b, d)
appear similar under di↵erent poses.
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4.7.3 Lab Experiments and User Study

In this experiment, I test the prediction accuracy of my method using real-

world materials. I used five real-world materials measured from lab experiments [93],

which are sampled from sweater, t-shirt, tablecloth, jeans, and blanket, respectively.

The materials are used to create videos using the same pipeline as I generate the

training data. The videos are then input to my network model for material estima-

tion, which is used to generate the resulting videos with other conditions being held

the same (see Fig. 4.16 for sample frames).

I first quantify my material recovery using the sensitivity analysis described

in [21]. For each of the materials, I measure its sti↵ness ratio according to the

deformations under a fixed amount of external forces. The measured values are

then compared with the one predicted from my method, reported in Table 4.3. My

method achieves a relatively small error between 9.5% to 16.7%.

Material Name [93] Stretching Ratio Bending Ratio Mean Relative
(GT/Prediction) (GT/Prediction) Error

gray-interlock 1.01/1 1.6/2 10.5%
navy-sparkle-sweat 0.56/0.5 1.7/2 12.8%
white-dots-on-blk 15.8/20 3.5/4 16.7%
11oz-black-denim 3.6/3 3.0/3 8.3%
pink-ribbon-brown 2.93/3 12/10 9.5%

Table 4.3: Lab experiment results. My material estimation achieves relatively
small errors compared to lab measurements on all real-world materials tested.

To further validate and quantify the material similarity, I conduct a user study

to examine how close my estimation results are to the ground-truth data in human

perception. In the study, I place two videos side by side for each material; then ask

each participant to rate the level of material similarity: from 0 (totally di↵erent)
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to 10 (identical). There are 25 subjects in my study group: 17 male and 8 female,

with age ranging from 20 to 40. To further calibrate the subjective score range,

I use a pair of videos generated from the same material but with di↵erent mesh

resolutions and inform the participants that this example has a similarity score of

5 for calibration. My results show that the average similarity ratings for five tested

materials vs. the ground-truth data are all larger than 5, ranging from 5.7 to 8.5,

with an overall mean value of 7.1. These indicate that my method indeed can recover

fabric materials with only minor perceptible di↵erences to the real-world materials.

Besides the main results, I also conducted several other studies to investigate

how people perceive the garment materials in di↵erent environmental conditions:

Garment color and texture. I changed the garment colors and textures; then

asked participants the same questions. I found that by varying the garment colors,

either brighter or darker, does not a↵ect the similarity scores much – within a

maximum di↵erence of 0.4. On the other hand, changing the textures results in

more perceptible e↵ect – with similarity score di↵erences of 0.5 to 0.9.

Lighting. I varied the lighting conditions in the rendered results to understand

how shading on the garments a↵ects material perception. The results show that

the similarity scores are decreased by 1.1-1.3 when one of the videos has a di↵erent

lighting angle than the other. These noticeable di↵erence indicate the e↵ects of

lighting and shading on how humans perceive wrinkles and folds.

Sti↵ness range. I took the material called ‘gray-interlock’, consisting of 60% cot-

ton and 40% polyester, and multiplied its material parameters by 1, 2, 5, and 10,
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respectively. The participants were asked to distinguish which of the two sampled

materials is sti↵er. My findings indicate that there is little perceptible visual di↵er-

ence between lower sti↵ness values till when the garment sti↵ness is increased to a

certain threshold. This finding also reconfirms my design rationale of the material

space discretization using sensitivity analysis in Sec. 4.3.

Additional Results. I present more comparisons with other related learning-based

methods for garment shape and pose recovery in Appendices. Please note that none

of these methods was designed to recover the fabric materials, the main focus and

motivation of this work for simulation-based virtual try-on, as shown in Fig. 4.8.

(a) Input video (b) Reconstruction result

Figure 4.8: Qualitative comparison with a real-world video.

4.7.4 Ablation Study

Method CD SD
Single-scale 0.31 8.05
Multi-scale 0.12 1.03

Method MPJPE CD
w/o feedback 62.93 0.89
w/ feedback 55.20 0.88

(a) Auto-encoder (b) Human and garment estimation

Table 4.4: Ablation study for di↵erent parts of my proposed network. My
method is marked in Italic. CD stands for errors in Chamfer Distance; SD stands for
Sinkhorn Divergence [150]; and MPJPE stands for Mean Per Joint Position Error
– all in millimeters (mm). My method results in notably smaller errors than all
baselines in the estimation and reconstruction tasks.
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(a) T-shirt and pants (day) (b) T-shirt and skirt (day)

(c) T-shirt and pants (night) (d) T-shirt and skirt (night)

Figure 4.9: Sample test images for the comparisons with [110].

In the following ablation studies, I verify the e↵ectiveness of my network model.

I use the test errors to compare my model with the baselines, which include previous

methods or their combinations. During the test, all other conditions are held the

same, except for the network structure itself.

w=0.0 w=0.2 w=0.5 w=0.8 w=1.0

Figure 4.10: Interpolation between di↵erent garments. w is the interpola-
tion weight. I extract the latent code of 2 di↵erent garments: a long-sleeve top &
pants (leftmost) and a short-sleeve dress (rightmost). I use the decoder to produce
new garments of linearly-interpolated latent codes, enabling smooth transitioning
between topologically di↵erent garments not achieved before.

Garment auto-encoder. I use a two-level auto-encoder structure to address the

highly dynamic geometry of garments, as discussed in Sec. 4.4. I demonstrate here
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Soft Silk Frame 1 Frame 2 Sti↵ Polyester Frame 1 Frame 2

Figure 4.11: Material transfer examples. My method can accurately estimate the
material parameter from the input video and replicate the same e↵ect in other
animations. Note that di↵erent estimated materials create significantly di↵erent
visual appearance even for the same animation.

its e↵ectiveness compared to the baseline, which simply consists of a PointNet [99]

encoder and an AtlasNet [141] decoder. There are two theoretical advantages of

my method against the baseline. First, the two-level structure partitions the entire

point cloud by patches that only overlap by a small fraction. This approach makes

the local features more focused on its local shape rather than on a more expanded

surface. Next, the two-level network also o↵ers more capability to express detailed

features and prevents overly-smooth reconstructions.

In Table 4.4(a), I report my test errors compared to the baseline. In addition

to Chamfer Distance as I used in the training, I also use Sinkhorn Divergence [150],

which is a fast approximator for computing Earth Moving Distance between two

distributions. While Chamfer Distance indicates the average distance between two
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point clouds, Sinkhorn Divergence captures the density di↵erence across space. The

numbers in the table show that my method not only reproduces point clouds closer

to the ground-truth but also has more evenly-distributed points due to my patch-

wise partition during training. The results align with my theoretical analysis.

Garment geometry estimation. In Sec. 4.5.1, I proposed a closed-loop feedback

structure to improve the estimation of both the human body and garment shape.

I conducted an ablation study to show the di↵erence introduced by this structure.

My baseline is a two-branch estimation block that predicts the human body and the

garment in parallel but sharing the image features as input. Although it does not

have the feedback correction, it already benefits from multi-tasking which can ex-

tract useful common image features. I use Mean Per Joint Position Error (MPJPE)

for human estimation metric, and Chamfer Distance for garment estimation.

As shown in Table 4.4(b), by introducing an extra feedback loop, my model

results in a much smaller error on human body estimation. Interestingly, the gar-

ment estimation error is not greatly improved, possibly because the error comes

more from local shapes (especially those occluded by the human) than the global

one.

I further compare my method with a recent work [10] since their task is the

most relevant to mine. I use the public dataset from Multi-Garment-Net [10], which

consists of 95 scans of people. Nearly half of them are not suitable due to incorrect

or incomplete garment labeling. I tested my model in the dataset without any fine-

tuning and used their reported numbers for comparison. I use the Chamfer Distance
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defined in Eqn. 4.5 as my test metric. As shown in Table 4.5, my model, without

any fine-tuning or domain adaptation, achieves the smallest error – whether the

ground-truth human body model is provided or not during reconstruction. Since

my model is trained on a wider range of body poses and garment types than theirs

while achieving better accuracy, it has shown to o↵er good generality to unseen

inputs.

Methods
[68] [10] Mine

GT Pose GT Pose Full Pred. GT Pose Full Pred.

Pants (mm) 5.44 5.57 10.16 1.58 3.08
Short Pants (mm) 8.23 5.97 10.00 4.92 5.69

T-shirt (mm) 5.80 5.63 11.97 1.67 3.08
Shirt (mm) 5.71 6.33 9.05 2.29 3.75
Coat (mm) 5.85 5.66 9.09 2.84 3.65

Table 4.5: Test errors on the Multi-Garment Net dataset [10]. My method
achieves the best estimation accuracy across all garment types, without any fine-
tuning or reference body.

4.7.5 Latent Code Interpolation

To showcase the expressiveness of my learned latent space, I conducted an

experiment generating new garments by interpolation. I encode two di↵erent gar-

ments to obtain their latent codes and linearly interpolate in between. I generate

the new point clouds using the interpolated results accordingly. The visual results

are shown in Fig. 4.10. My results show that the interpolations represent a smooth

transition between the two original garments, creating new garment styles that are

not seen before during training. Note that modeling long dresses or garments with

di↵erent mesh structures are not achieved in previous works, which either use dis-

104



placement maps [10, 11] (thus not able to model dresses) or mesh-CNN for encoding

local features [8] (thus not applicable to di↵erent mesh topologies). My method is

the first to propose a feature space that unifies garments of di↵erent topologies with

di↵erent body poses and shapes, which is the key component to accurate garment

material estimation, as demonstrated in Table 4.1.

I provide more interpolation results in Fig. 4.12. As described in Sec. 4.7.5, my

algorithm enables two garment meshes to be interpolated using their latent code to

generate new garments. The first row shows an example where the dress is shorten

at the bottom and extended at the sleeves gradually. I also show interpolation

results in the point cloud form in Row 2-4. The second row is another example

of transformation from dress to pants, and the last two examples demonstrate the

ability to interpolate the garment with di↵erent body poses. In these two cases, the

garment type is the same, but the body pose is changing. Although the poses in

between are never seen in the training set, the interpolated garment point clouds

follow the pose transition, showing very little interpenetrations with the body. Note

that when the human legs are moving, the garment correctly deforms with the pose,

close enough to be consistent with the body motion, while still being collision-free.

See the supplementary video for the interpolation animation.

4.7.6 Additional Qualitative Results

I tested my model without any fine-tuning on the images provided in MGN [10]

and DeepCap [118], as shown in Fig 4.13. Although my model is never exposed
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w=0.0 w=0.2 w=0.5 w=0.8 w=1.0

w=0.0 w=0.2 w=0.5 w=0.8 w=1.0

Figure 4.12: Interpolation results. My method can smoothly interpolate gar-
ments between di↵erent topologies and body poses.

to real-world images, it successfully predicts the human body pose and garment

shape correctly. Note that my model is an end-to-end network that has no prior

knowledge to any information about the garment shape, while MGN assumes that

there is a one-to-one approximation mapping between body vertices and garment

vertices. DeepCap has an initial ground-truth mesh that is to be optimized. My

model can thereby easily generalize to unseen garments, which is not possible using

these two works. In Table 4.6, I extensively compare my work with previous ones

regarding di↵erent assumptions, functionalities, and abilities. I define ‘one model

per garment’ in ‘generality’ as that the method needs to create extra templates or
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registrations to the body, or need to retrain part of the network in order to predict

a di↵erent garment type. Although DeepFashion3D [120] and ARCH [119] also have

generality to di↵erent topologies to some extent, there are still limitations in their

pipeline. The output from DeepFashion3D has to be continuous in one body part,

meaning that they cannot support all topologies (e.g . dresses with holes). ARCH

does support di↵erent garments on the body, but the output is a water-tight mesh

together with the body, which is not always convenient for certain applications like

virtual try-on. In contrast, my method naturally supports all kinds of topologies,

and predicts the body and the garment in separate meshes.

Input image MGN [10] Mine (point cloud) Mine (mesh)

Input image DeepCap [118] Mine (point cloud) Mine (mesh)

Input image DeepCap [118] Mine (point cloud) Mine (mesh)

Figure 4.13: Qualitative Results. My model can achieve similar visual results
with previous work without any knowledge of the target garment or any assumption
of the topology (See Table 4.6).
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Method Input Dependencies Generality Dresses support Separate mesh Material Estimation

MGN [10] Semantic seg. + 2D joints Garment correspondences One model per garment No Yes No
DeepCap [118] Foreground seg. Template mesh One model per garment Yes (w/ known template) No No

[110] Semantic seg. Template mesh One model per garment Yes (w/ known template) Yes Yes
DeepFashion3D [120] RGB frame (garment only) None One model for all Yes (limited topologies) Yes No

Tailornet [11] Body parameters Garment correspondences One model per garment Yes (limited topologies) Yes No
BCNet [121] RGB frame Garment correspondences One model per garment Yes (limited topologies) Yes No
SIZER [123] Body scan Garment labels One model per garment No Yes No
ARCH [119] RGB frame (foreground only) None One model for all Yes (water-tight) No No

Mine RGB frame None One model for all Yes Yes Yes

Table 4.6: Comparison with previous works. My method can handle the largest
set of garments, using fewest possible information (i.e. RGB image), in one stand-
alone, end-to-end network.

4.7.7 Application: Virtual Try-On

To further showcase the strength of my network, I apply it to a virtual try-on

application. An online video clip showing a person wearing a dress is taken as input

to my network (Fig. 4.14a). The body and the dress are estimated in each frame,

and the fabric material is inferred using the garment motion and the image features.

As shown in Fig. 4.14b, my method successfully infers the correct human body and

the garment.

I then simulate the garment in a di↵erent body motion, which is the key

functionality in virtual try-on systems. The simulated results (Fig. 4.14c) show that

the garment motion provides similar visual impression with the input dress (mostly

from the wrinkle motions of the dress). This example shows that my method can

e↵ectively extract the correct type of fabric material and transfer the given fabric

material in a video to a simulation-based virtual try-on system. More animation

results can be found in Fig. 4.11 and the supplementary video.
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(a) Input video clip (b) Estimated result (c) Simulation result

Figure 4.14: Virtual try-on example. My network model can clone a person’s
appearance from the physical world (in a video) to the virtual world, enabling simu-
lation under di↵erent motions with accurate estimations of the body shape, garment
geometry, and fabric materials.

Figure 4.15: Training data examples. My dataset includes various garment
topologies with rich body poses, textures, and background environments. Some
examples are shown here.

4.8 Conclusion

In this chapter, I introduced an end-to-end learning model for garment material

estimation using RGB videos. I do not assume other inputs (e.g. segmentation, 3D
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gray-interlock navy-sparkle-sweatwhite-dots-on-blk 11oz-black-denimpink-ribbon-brown

Ground-truth materials

Predicted materials

Figure 4.16: User study examples. My predictions received similarity scores of
5.7 to 8.5 in a 0-10 range.

scans, multi-views, etc.) or any prior knowledge on the garment shape/topology,

design patterns/templates, or correspondences. I extract the multi-scale features

to e↵ectively represent the dynamic geometry structure of garments, which can be

combined with image features to estimate fabric materials by learning their temporal

patterns, while improving the human body reconstruction using a feedback loop.

This approach is perhaps the first to introduce a unified parametric model for all

garment types, and it can thereby support garments of di↵erent topologies without

the need to retrain di↵erent models. Experiments show that my method achieves

much higher accuracy up to 70.14% in estimating fabric materials than prior works,

while o↵ering capabilities in recovering garment types and topologies with generality

and simplicity for an unification of multiple correlated tasks.

One limitation of this method is that the current representation does not

support multi-layer or folded garments. These issues can be addressed by adding
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structural prior to the garment model to encode multi-layer clothing and curvature

representation to support multi-fold features. I further postulate that the proposed

multiscale garment auto-encoder can also be integrated with neural rendering [151]

to synthesize photorealistic images of simulated garments.
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