
Chapter 5: Time-Domain Parallelization for Accelerating Cloth Sim-

ulation

Figure 5.1: Simulated ‘Karate’ animation using my method. My method parallelizes
the simulation workload in time domain using a two-level mesh representation. In
the figure, the time domain partition point sk is between frame t-1 and t, which
will be simulated by two di↵erent processors. I use an iterative detail recovery
algorithm to refine the state of the cloth from low-resolution mesh before the par-
allel high-resolution simulation begins. As a result, very little visual artifacts can
be observed from (b) to (c). In the shown benchmark above, my parallelization
method has achieved up to 99x speedup on 128-core systems – an unprecedented
level of scalability in distributed CPU systems – compared to at most 47x on a
128-core system [152]. The performance gain is also better than the GPU par-
allelization [153] on similar benchmarks, while my approach o↵ers the additional
flexibility for coupling with adaptively remeshed cloth simulators.

5.1 Introduction

With the proper estimated body parameters, garment geometry, and fabric

materials obtained from Chapter 4, it is now possible to synthesize garments on a
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given sequence of body motion. One straight-forward way for garment synthesis is

using cloth simulation. It o↵ers realistic garment motion and collision-free results

at the cost of high latency and throughput. Luckily, given the fact that the try-on

system often resides on the cloud, it is possible to accelerate the cloth simulation

by making use of manycore and cloud computing.

In this chapter, I propose a novel method for parallelizing cloth simulation.

Unlike previous methods, my method divides the workload in time domain that

minimizes the communication overhead, thereby achieving much better scalability

and higher performance gain over previous methods.

The key challenge in time-domain parallelization is to obtain or approximate

the simulation states before the time-consuming simulation begins. I use a two-

level mesh representation to address this time-dependency issue. Observing that

a coarse-level mesh can be simulated at a much higher speed, my method runs a

lower-resolution simulation using coarser meshes to approximate the state at each

time step. After an appropriate remeshing process, the higher-resolution simula-

tions using finer meshes can be run in parallel. To further refine the simulation

results, I propose a practical technique to smooth the state transition from the low-

resolution to high-resolution simulations. To recover the lost states, I make use

of the coarse-level mesh and run several ‘static’ simulation steps before the high-

resolution simulation starts. Experiments in Sec. 5.6 show that this technique can

reduce the visual artifacts between temporal partitions. In order to balance the

workload of each processor, I further develop an adaptive partitioning algorithm,

which takes into account the varying time consumption of each frame caused by
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di↵erent contact configurations. I make use of the time measurements of previous

frames in both mesh resolutions and determine the partition point based on the

current estimation of the total running time.

To sum up, the key contributions of this work include:

• A time-domain parallelization algorithm supporting adaptive meshes with min-

imal communication overhead (Sec. 5.3);

• Load estimation and load balancing techniques that maximize the overall per-

formance acceleration (Sec. 5.4);

• A practical state transitioning algorithm between low- and high-resolution

simulations to recover details and ensure the visual quality of the simulated

sequences (Sec. 5.5).

On a given set of benchmarks, my method achieves an unprecedented level of

scalability in distributed CPU systems when compared to [152, 154]. Its performance

gain is also higher than the GPU parallelization [153], while my approach o↵ers the

additional flexibility for coupling with adaptively remeshed cloth simulators. I also

verify that given su�cient amount of processors, my method can achieve an average

performance as fast as the low-resolution simulation, while obtaining simulation

results similar to ones using high-resolution meshes. This method can be widely

adopted in applications, where runtime performance is much more critical than

accuracy, such as rapid design prototyping.
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5.2 Related Work

Figure 5.2: An overview of my method. I first simulate the cloth mesh in low
resolution, obtaining the approximated states XC

k
. After I select the starting point

in time for each processor sk (Sec. 5.4), I use the upsampling function to generate
the initial states X̃F

sk
and recover the detail information iteratively (Sec. 5.5). Lastly,

I simulate the entire sequence in parallel, given the starting states XF

sk
.

In this section, I survey recent works on cloth simulation, parallelization tech-

niques, and other related acceleration techniques for physics-based simulation.

5.2.1 Cloth Simulation

Simulation of cloth and deformable bodies has been extensively studied for a

wide range of applications in di↵erent areas, from computer graphics, CAD/CAM,

robotics and automation, to textile engineering. Due to their ability to take large

time steps, implicit or semi-implicit methods [24, 155, 156, 157] have been widely

adopted after the seminal work by Bara↵ and Witkin [27]. However, most of these

works focus on the serial simulation improvement and their runtime performances

can be slow. I use one of the state-of-the-art simulation algorithms, ARCSim [74],

as the cloth simulator in my prototype implementation, but my parallelization tech-

nique does not rely on any specific simulation algorithm.
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5.2.2 Time Parallel Time Integration Method

The scientific computing community have thoroughly studied parallelization

techniques solving partial di↵erential equations [158, 159, 160]. I refer readers to

this survey by Gander et al. [161] for more details. Cloth simulation is similar to the

general time-evolution equations. However, there is a gap for these works to be di-

rectly applicable. Cloth simulation has coupled other non-PDE factors, such as the

collision response due to continuous contacts with the human body. The standard

collision response within Physically-based Modeling literature is usually an “empir-

ical” impulse applied mainly on the boundary cases, where the cloth is about to

collide with the body or within a pre-defined ’threshold’ neighborhood. Traditional

solutions [158] use an arbitrary initial guess (e.g.Xt = X0) for each of the time step

and try to update the overall solution using a fixed point iteration. The discontinu-

ity introduced by collision not only prevents the method from solving the fixed point

problem in Newton’s method (calculating derivatives of the conditional term deter-

mined by variables to be solved), but also prevents most of the collision response

algorithm from obtaining stable and correct results (a severe inter-penetration of

Xt = X0 at time t that can hardly be handled). This special characteristic of cloth

simulation makes it challenging to apply methods solving pure integrations (where

the solution space is often regular) such as PFASST [158], due to collision-induced

discontinuities.
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5.2.3 Parallel Cloth Simulation

Several parallelization techniques for cloth simulation have been proposed.

[162, 163] proposed GPU-based simulation methods for elastic bodies. [164, 165,

166, 167, 168] proposed di↵erent types of spatial parallelization but they all su↵er

from severe sub-linear scalability due to large communication overhead. [152] im-

proved the work from [169] using Asynchronous Contact Mechanics and reduced

the communication by proposing a locality-aware task assignment, which first scaled

more than 16 cores. [153] implemented a GPU-based simulation pipeline. Their

method has achieved an impressive speedup of 58 times, which is comparable to the

performance of my method on a 64-core cluster.

The main di↵erence between other parallelization methods and mine is that

I decompose the simulation task in time domain. Partitioning in time domain sig-

nificantly reduces the communication cost in distributed systems, thereby o↵ering

a considerable speedup. To the best of my knowledge, my method is the first

time-domain parallelization algorithm for cloth simulation that can be coupled with

adaptive remeshing schemes.

5.2.4 Hierarchical Structures and Multi-level Methods

Multi-level algorithms have o↵ered significant performance improvement on

various simulation problems. Tamstorf et al. [170] proposed a multi-grid method to

speed up the cloth simulation. Bergou et al. [171] developed a tracking solver for

rapid interaction in animation. They set up a two-level mesh representation and used
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the desired coarse level animation to guide the fine level one by applying constrained

dynamics. My method builds on top of their work to ensure the low-res consistency

of the results. Recent works [172, 173, 174] generate high-resolution wrinkles from

low-resolution cloth. My method is a physically-aware approach; it’s more diverse

and realistic compared to those work. Mine is more of an intermediate trade-o↵

between time-consuming simulation and physically-unaware wrinkle synthesis. I

use a hierarchical mesh representation to approximate the states of the cloth mesh

at each time step, before transitioning to computationally expensive high-resolution

simulations on fine meshes.

5.2.5 Mesh Upsampling

Mesh upsampling algorithms are widely explored from geometrical approaches [175,

176, 177] to data-driven methods [178, 179]. My method needs a specific mesh

upsampling function to transfer the (approximated) state of the simulated cloth

from low-resolution to high-resolution. While classic subdivision methods [177] can-

not generate high-resolution details, data-driven ones [178, 179] depend largely on

the specific configuration in the training data, and as a result, can generate inter-

penetrations when applying to arbitrary scenarios. For generality, I do not assume

any specific upsampling function. Instead, I introduce an iterative detail-recovering

approach described in Sec. 5.5 in order to account for the lost details in the low-

resolution mesh. In my experiment, I use an adaptive remeshing method in [74] for

its flexibility of use and a straightforward, linearly-interpolated subdivision for fast
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error computation.

5.3 Overview

In this section I give an overview of my approach. I define the problem formally

before I introduce the basic idea of the method.

Problem Statement: Given the initial state of a cloth mesh, X0 (inclusive of both

position and velocity), generate a sequence of cloth states V = {X1, . . . ,XN} that

characterize the cloth interaction with the given environment, using a time step �t

and a simulation function Xk+1 = f(Xk,�t).

Fig. 5.2 shows the overall pipeline of my algorithm. The key idea of this

method is to partition the time domain of the cloth simulation rather than the

spatial domain of the simulated cloth. In order to obtain the (approximated) mesh

state without full simulations, I propose a two-level hierarchy representation. I

simulate the cloth mesh XC at a coarser level with much lower computation and

determine the partition point S (in time) according to the algorithm described in

Sec. 5.4 before I simulate the entire high-resolution sequence XF at the finer level

in parallel.

The fine-level mesh at the starting point of each temporal partition is obtained

by the corresponding coarse-level mesh using an upsampling/remeshing function

u(XC). However, the finer mesh may be quite di↵erent from the coarse one after

remeshing because high frequency information XD is not stored in the coarse-level

mesh. Therefore, I design a practical state-transitioning technique to recover the
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lost details to the extent possible, before the high-resolution simulation begins. This

state-transitioning method will be discussed in Sec. 5.5. I list the notations used in

this chapter in Table 5.1.

NOTATION DEFINITION

Xk state of the cloth at step k
V output sequence of states
N simulation sequence length
�t specified time step
f(Xk,�t) one-step simulation
f i(Xk,�t) i-step simulation
XC coarse level state
XF exact fine level state
XD state di↵erence between the two level states
X̃F approximated fine level state
u(XC) upsampling function
p number of processors
S ordered set of starting points for parallelization
sj starting point of the jth processor
K coarse-to-fine ratio

Table 5.1: Notations and definition of my method.

5.3.1 Two-Level Mesh Hierarchy Representation

Ideally I want to divide the whole simulation process into several temporal

partitions so that I can simulate each partition in parallel and independently. How-

ever, since the mesh state at step k, Xk, is determined by the state at previous step

Xk�1, I do not know the exact intermediate states until I finish the simulation from

step 0 to step k. Here I use the hierarchical mesh representation to address this

time-dependency problem. I maintain two sets of simulated meshes, XC and XF ,

which represent the low- and high-res(olution) simulation states using the coarse-

and fine-level meshes, respectively. I can recover the high-res state from the low-res

120



one by a user-defined upsampling function: X̃F = u(XC).

Note that the obtained high-res state from the fine mesh, X̃F , is only an

approximation of the exact state XF . But, for simplicity, I assume that XF = X̃F

in this section. Further state refinement is discussed in Sec. 5.5.

Due to the fact that the simulation using a coarse mesh is significantly faster

than the one using a fine mesh, I can obtain low-res states {XC

1 , . . . ,X
C

N
} in a

relatively small amount of time. I further choose p starting points S = {s0 =

0, s1, . . . , sp�1} in time for p processors, according to my partitioning algorithm to

be discussed in Sec. 5.4.1, and run the high-res simulation using the fine mesh in

parallel:

XF

k
=

8
>>><

>>>:

X̃F

k
k 2 S

fk�sj(XF

sj
,�t) sj < k < sj+1

(5.1)

where

f i(Xk,�t) =

8
>>><

>>>:

f(f i�1(Xk,�t),�t) i > 1

f(Xk,�t) i = 1

(5.2)

for running i steps of simulation.

5.4 Time Domain Parallelization

In this section I will describe my parallelization technique. I solve the parti-

tioning problem from the simplest case to the most complex one, in order to balance

the workload of each processor.
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5.4.1 Static Temporal Partitioning

A straightforward approach for the partition problem is to divide the time

domain into p temporal segments of the same length:

sj = b
N

p
jc (5.3)

Assuming that every simulation step using the fine mesh takes the same

amount of time, the overhead of this partition schedule is the time spent in simula-

tion using the coarse mesh. To further simplify the case, I take another assumption

that the simulation speed at the low-res level is K times as fast as high-res level. I

can estimate the speedup as:

⌘1 =
KN

K N

p
+ (p� 1)N

p

=
Kp

K + p� 1
(5.4)

Note that in the low-res simulation using a coarse mesh there is no need to

continue the simulation after I reach sp�1. Therefore, the time spent on low-res

simulation is (p� 1)N
p
.

One improvement of the straightforward approach is that I can start the high-

res simulation in parallel, as long as the corresponding starting point is ready. In-

tuitively, I want all processors of the system to finish their jobs at the same time

to achieve a good workload balance and the best speedup possible. This objective

can be attained by adjusting the starting points so that the processor which starts
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earlier takes a longer part to simulate. Taking the same assumption, I arrive at a

load-balancing equation:

sj +K(sj+1 � sj) = sj+1 +K(sj+2 � sj+1)

Recall that K is the ratio between the high- to low-res simulation time, sj, sj+1,

and sj+2 are the starting point for simulation on the processors j, j + 1, and j + 2,

respectively. This equation yields:

sj = b
1� qj

1� qp
Nc (5.5)

where q = 1� 1
K
. The speedup can then be expressed as:

⌘2 =
KN

K(s1 � s0)
= K �K(1� 1/K)p ⇡ p�

✓
p

2

◆
1

K
(5.6)

This is a tighter bound than Eqn. 5.4, as p approaches to K. The key reason

behind the sub-linear speedup is that the overhead ratio to the original computation

is 1/K. In practice, the ratio between high- to low-res simulation time can be

controlled by the user and can usually reach 100⇠200 using the method described

in Sec. 5.4.3, which is su�cient for running on a large distributed system.
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5.4.2 Adaptive Partitioning

In the discussion above, I consider K as a known constant throughout the

entire simulation process. However, it is highly unlikely that this would be the

case. First of all, remeshing in the simulation run leads to a varying number of

vertices and thus a dynamically changing size of the linear system. Secondly, the

computational cost can vary considerably, even with the same mesh size, due to

collision queries. Recent studies [153] show that collision detection and response

can take up to 80% of the total running time. Moreover, the di↵erence of per-step

runtime is also dominated by the collision response and the size of the adaptive mesh,

which are largely related to the object granularity. It has much more impact in the

high-resolution than the low-resolution, which K accounts for as well. Therefore,

the ratio of high- to low-res simulation time varies and the exact number is usually

unknown.

A fixed partitioning scheme can become unstable and sensitive to these varia-

tions, resulting in load imbalance. One common solution is to cut down the jobs into

more smaller tasks so that the imbalance can be reduced by dynamic job scheduling

scheme. This method surely works, but it will have large extra overhead due to job

scheduling and required preprocessing time (Sec. 5.5), and extra hand-tuned granu-

larity parameter to optimize the performance. Since I want to avoid any unnecessary

computational overhead, I here propose an adaptive partitioning algorithm.

Suppose that I have simulated up to step n using the coarse mesh, when the

first high-res parallel simulation with the same starting time has completed m steps,
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Figure 5.3: Adaptive partitioning Algorithm. I estimate the ratio of high-to-low-res
simulation time, K̃, according to the runtime data I observe so far ([0,m] in High-res
on Processor 1 and [0,n] in Low-res on Processor 0). The objective is to predict the
future running time (marked by ‘Processor 0’ and ‘Processor 1’ respectively) to be
as close as possible to the actual time.

where m < n. Let TC(m) and TF (m) denote the running time of the previous m

steps using the coarse and fine meshes, respectively. Then, the ratio of the high-to-

low-res simulation time, K̃, can be approximated as:

K̃ =
TF (m)

TC(m)
=

TC(n)

TC(m)
(5.7)

Since these numbers may vary, it is not appropriate to determine the global

partition points using current approximations. Instead, I use them to determine if I

should perform a cut on step n, i.e. whether n should be s1 or not. Fig. 5.3 gives a

visualization of the process. The objective of the partitioning algorithm is that the

total running time on the processor 0, which performs the low-res simulation and

the last part of the high-res simulation, is equal to the running time of the current

parallel simulation that performs the high-res simulation using a fine mesh from step

0 to step n. This relation can be formulated as:

TC(s̃p�1) + (TF (N)� TF (s̃p�1)) = TF (n) (5.8)

where s̃p�1 is the estimated starting point of the last partitioned segment. I use
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the method described in Sec. 5.4.1 to obtain this parameter. I further approximate

Eqn. 5.8 to:

n =
N

K̃
+

K̃ � 1

K̃
(N � s̃p�1) (5.9)

by assuming stable parameters in the remaining simulation:

TF (j) = K̃TC(j) = K̃TC(1)j for any j (5.10)

Since n is increasing while K̃ and s̃p�1 can be considered stable compared to

n, Eqn. 5.9 can be defined at some point in 1  n  N � p. The remaining cut can

be completed recursively. Algorithm 2 shows the pseudocode of this method. K̃ and

s̃p�1 here are approximated values used only for this cut. They can vary during the

simulation, which will guide my partition algorithm to have adaptive cuts, instead

of fixed ones in Sec. 5.4.1.

Algorithm 2: - Adaptive Partitioning

Require: N, p, XC

0

1: n 0
2: start fine level simulation from step 0 on Processor 1
3: while true do
4: n n+ 1
5: obtain XC

n
from XC

n�1

6: m steps finished by Processor 1
7: calculate K̃, s̃p�1 from Eqn. 5.5 and 5.7
8: if condition of Eqn. 5.9 is met then break
9: end if

10: end while
11: t1  n
12: Control Processor 1 to stop at Step n
13: Recursively partition remaining N-n steps with p-1 processors
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In practice, the overall performance using adaptive partitioning is similar to

that using static partitioning when the user can manually select the best K value

for the simulation scenario. This algorithm generally o↵ers the advantage of dynam-

ically estimating the ratio of the high-to-low-res simulation time, so the user does

not need to hand-tune this parameter for the best possible speedup.

5.4.3 Analysis on Performance Scalability

As discussed in the previous sections, the scalability of this time-domain parti-

tioning method for parallel cloth simulation depends largely on the general runtime

ratio between the high- to low-res simulation time, K. Since I perform a low-res

simulation using a coarse mesh and a parallel one using a fine mesh, the low-res

running time is a computational overhead for all processors and thus the speedup

before any improvement is K

1+K/p
= Kp

K+p
. The ideal case of perfect workload bal-

ance, ⌘2, is discussed in Sec. 5.4.1, hence the actual performance of Algorithm 2 in

a specific scenario, ⌘3, has the following theoretical bound:

Kp

K + p
< ⌘1  ⌘3  ⌘2 < K (5.11)

Therefore, the higher the K value is, the higher the overall performance gain

of my method would be. One common way to increase K is to control the number of

total mesh triangles by limiting the smallest possible size of each triangle in the low-

resolution level. The other way is to enlarge the time step of the low-res simulation,

since it is the common overhead of all processors and should aim for faster speed
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rather than smaller discretization errors. A properly chosen large time step can

improve the overall performance with minimal impact on the simulation results.

With the coarsening techniques in space and time domains, K can be su�ciently

large to obtain good scalability in large distributed systems.

5.5 Smooth State Transitioning

Figure 5.4: An example of the coarse mesh XC , intermediate mesh, X̃F , and the
fine mesh, XF , after iterative corrections.

As mentioned in Sec. 5.4, the high-res simulation state approximation X̃F =

u(XC) is not the same as the exact state XF using the fine mesh, the reason of

which is that the high frequency information needed to reconstruct the states of

the fine mesh is missing in the estimated states of the simulation using the coarse

mesh. Therefore, if I take X̃F directly as the starting state of the parallelized

simulation, error e = E(X̃F ,XF ) will occur, since the high-frequency information is

lost. Although e will vanish as the detail of the mesh is recovered by the simulation,

another error will appear at the beginning of the subsequent partition after the end of

the current one. (Here I focus on the actual visual e↵ect instead of the L2 distance

of each vertex. The error of my specific goal can be defined as the smoothness
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of the cloth.) Thus, this error will appear as a ‘popping visual artifact’ in the

final concatenated sequence of the cloth simulation. Fig. 5.4 shows an example of

the inaccurate starting mesh (middle) obtained from the corresponding coarse level

mesh (left), which causes a popping visual artifact because the error compared to

the actual state (right) is large enough to be visible.

One straight-forward method is to apply global smoothing optimization as a

post-processing step. However, this space-time optimization is too time consuming

to be used in speed demanding applications. As mentioned before, Bergou et al. [171]

used constrained dynamics for fine level simulation to match with the coarse level

motion. I employ this method to prevent the high-res simulation from diverging too

far from the low-res one. However, the high-frequency detail information would be

still missing at the transition point. Inspired from the observation that the visual

error will be eliminated during the simulation, I propose an iterative refinement

technique that can recover as much as possible the high-frequency detail of the

cloth from the low-res simulation using the coarse mesh.

5.5.1 Iterative Detail Recovery

Consider the mesh state at the consecutive step points XC

k�1 and XC

k
. The

fine-level mesh can be regarded as the sum of the low-frequency coarse mesh and

the high-frequency detail:

XF = u(XC) +XD (5.12)

Assuming that the time step is su�ciently small and the detail does not change
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much between two simulation steps, I have:

XF

k�1 � u(XC

k�1) ⇡ XF

k
� u(XC

k
) = XD

k
(5.13)

The idea here is to approximateXF

k�1 usingX
C

k�1, X
C

k
and X̃F

k
. From Eqn. 5.13

I have:

X̃F

k
= f(X̃F

k�1,�t) (5.14)

⇡ f(X̃F

k
� u(XC

k
) + u(XC

k�1),�t) (5.15)

Note that Eqn. 5.15 can be considered as an updated version of Eqn. 5.14. By

subtracting the upsampled change of the state as a backward step and the simulation

itself as a forward one, I can compute X̃F

k
iteratively. Algorithm 3 below shows the

iterative detail recovery process. I run this algorithm at each of the transition point

as a pre-processing step before the high-res simulation begins.

Algorithm 3: - Iterative Detail Recovery

Require: XC

k�1, X
C

k
(k 2 S)

1: X̃F

k
 u(XC

k
)

2: while not reaching maximum iteration do
3: X̃F

k�1  X̃F

k
� u(XC

k
) + u(XC

k�1)

4: X̃F

k
 f(X̃F

k�1,�t) with constraints introduced by TRACKS [171]
5: end while
6: XF

k
 X̃F

k
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5.5.2 Convergence and Continuity

Taking the advantage of the constraint-based tracking solver introduced by

Bergou et al. [171], this iterative algorithm can be proved to have convergence

guarantee. I show the proof in the following section. It is not guaranteed that the

convergence point is exactly the same as the high-res simulation result. However,

due to the enforcement of the tracking constraint, the di↵erence compared to the

result at the previous step will be O(�t), which means that there will be very little

discontinuity and in most practical cases they are invisible.

5.5.3 Proof of Convergence of Algorithm 3

Theorem 1. Algorithm 3 can reach the convergence point when applying the coarse-

level tracking constraints to the system, as long as @F
@X = 0 for external forces.

Proof. I assume the whole system is running under the Forward Euler method:

0

BB@
�x

�v

1

CCA = �t

0

BB@
�v

M�1F(X)

1

CCA (5.16)

where F is the force function, and X =

✓
x v

◆T

is the state of the cloth. Given the

assumption that @F
@X = 0 for external forces, they have the same contributions for

each iteration and are all canceled out by the subtraction (�u(XC

k
)) in Algorithm 3.

So I only consider internal forces.

Since I only focus on one high-res simulation step here, I leave o↵ the resolution
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superscript and replace the step number subscript by the iteration time. I denote

the upsampled coarse-level di↵erence by �X0 =

✓
�x0 �v0

◆T

. Using the new

notation, I have:

0

BB@
xi

vi

1

CCA =

0

BB@
xi�1 ��x0

vi�1 ��v0

1

CCA+�t

0

BB@
vi�1 ��v0

M�1F

1

CCA (5.17)

I now regard the evolution from

✓
xi�1 vi�1

◆T

to

✓
xi vi

◆T

as one full simu-

lation step (instead of a backward-forward iteration), and only focus on the velocity

equation (since the position can be derived from it):

vi = vi�1 +�t(M�1F��a0) (5.18)

where �a0 = �v0/�t is the corresponding acceleration value. Given that the

internal forces are negative gradients of the potential energy, I have:

d2x

dt2
= M�1F�M�1M�a0 (5.19)

= �M�1@E

@x
�M�1@M�a0 · x

@x
(5.20)

= �M�1@E

@x
�M�1@E0

@x
(5.21)

= �M�1@Ẽ

@x
(5.22)

where I make up a form of potential energy (E0) with constant gradients to unite

the two components.
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By computing the dot product with the velocity (of the previous iteration), I

have:

dx

dt
·Md2x

dt2
= �dx

dt

���
(i�1)�t

· @Ẽ
@x

���
xi�1��x0

(5.23)

= �dx

dt
· (@Ẽ

@x

���
xi�1

� @2Ẽ
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or in a discrete form:

vi�1 ·Mai = �
@Ẽ

@t

���
xi�1��x0

(5.28)

This equation means that the whole system tends to decrease the sum of the

potential energy: when Ẽ is decreasing, the acceleration ai will have roughly the

same direction with the velocity; otherwise it will have the opposite one, makes the

velocity direction turn around eventually. The coarse-level tracking constraint here

serves as a damping component, which prevents the system from oscillation due to

conservation of energy. It also prevents Ẽ from infinitely decreasing since the coarse

shape of the mesh is strictly preserved [171]. Therefore, after su�cient number of

iterations the whole system will reach a balance where @Ẽ

@t
= 0, and a stable result

gives vi = ai = 0.

Note that although I have constraints on external forces, in most of the cases,
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they can be easily satisfied, such as gravitational forces and user-control impulse

forces. Here I consider collision response as part of the constraint system, so it

does not have impacts on the practical correctness. I use Forward Euler only for

the simplicity of the expression in the proof. Actually I can derive the same form

of Eqn. 5.18 using any other integrator (e.g. Backward Euler), during which the

extra terms related to �v0 (introduced by Backward Euler [27]) can be canceled

out, eventually leaving �a0. The main idea of the proof is that the system is

conservative, regardless of the actual integrator, before adding extra damping con-

straints that ensures the final convergence. Upon convergence, the change in the

high-res states (i.e. velocities and accelerations) will be the same as the change in

the interpolated low-res states. This step, together with the position constraints by

TRACKS, ensures the position and velocity di↵erence between the high-res results

at the boundary to be O(�t), smoothing out the visual popping artifact.

5.5.4 Iteration Number Estimation

The number of iterations needed for convergence, according to the proof, is

largely related to the strength of the coarse-level constraint (in other words, the

coarse-to-fine ratio K), since it provides the damping force to the system. Addi-

tionally, given a fixed upsampling scale (K), the iteration number is also related to

a) the sti↵ness and density of the cloth, and b) the time step �t. I estimate my

iteration number in a simplified 2-D spring-mass system. Suppose at t = 0 a string

with length l is hanging horizontally, with both endpoints fixed. It is currently
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discretized as one single piece of 1-D string so the middle part of itself will not fall

down. However, in the continuous real-world space, it is not in the equilibrium state

and it has a residual energy of O(l2). This continuous case can actually be regarded

as a string discretized to infinitely many small pieces. I define the residual energy

as the di↵erence of the potential energy between the current discretized one and the

continuous one.

Subdividing the spring will bring the entire system closer to the actual contin-

uous case (since the newly introduced vertices will fall down), so the residual energy

will decrease. The spring system will start to bounce around upon discretization

and I assume that there are damping forces in the system. After discretizing the

spring into c pieces of equal length, the new system will have a residual energy of

O(l2/c) when reaching the equilibrium state in the new discretization setting. If the

system is in the critical damping condition, the energy will decrease by a factor of

e after t =
p

ms/⇠ seconds, where ms is the mass of the spring and ⇠ is the sti↵-

ness. Therefore, the recovery time needed from the coarse level to the fine one is

O(
p

ms/⇠ ln c).

In my case, I have K = cO(1) which depends on the embedded simulator and

the collision state. Also I set lnK  7 to cover most of the cases. I use the density

and the Frobenius norm of the stretching and bending sti↵ness matrix in [93] to

estimate
p

ms/⇠. ms typically ranges from 0.1 to 1, while the value of ⇠ is between

10 and 100.

Combining all of them above, I have an estimation of c0
p

ms/⇠/�t as the

number of iteration steps needed, where ms is the density and ⇠ is the Frobenius
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norm of the stretching and bending sti↵ness matrix in [93]. I use c0 = 10 across all

of my experiments. In practice, the iteration can also end when no large di↵erence

is detected between current and previous results. I found that using my estimation

number the di↵erence threshold can be as small as 10�3 relative to the scale of the

cloth.

In each of the temporal partition, I add an extra simulation steps of c0
p
ms/⇠/�t

to refine the starting state, so the total ideal performance gain due to parallelization

is

⌘ =
N

c0
p

ms/⇠/�t+N/⌘2
(5.29)

Given a cloth material configuration with fixed ms and ⇠, ⌘ will have an upper-

bound of ⌘2 if c0
p

ms/⇠/�t<<KN/⌘2. This can be easily satisfied since the duration

N�t is usually from a few seconds to many minutes, and c0
p

ms/⇠ is usually smaller

than 1.

5.5.5 Implementation Details

There are some minor details in the implementation of the approach. When I

take a larger step in the low-resolution simulation, I estimate the change of the state

in the corresponding high-res step u(XC

k
) � u(XC

k�1) by linearly interpolating the

states in between. The same method is also used in the adaptive partitioning method

described in Sec. 5.4.2. The recovery iterations also count into the estimation of the

current K̃, but do not count into the total number of steps, N , since there is no

corresponding step in the low-res level and each processor has the same number of

136



extra simulation steps, so the system still remains balanced. I regard K̃ as +1 if

the first step of the high-res simulation is not finished at the time I determine n in

Sec. 5.4.2. Note that the stateX includes both the position and velocity components.

I also refine the velocities in the upsampling phase. When using adaptive remeshing,

I obtain the new velocity as the average of the two vertices during edge splitting,

following ArcSim [74]. The change of the state is also computed correspondingly.

5.5.6 State Inconsistency

In the extreme cases where the high-resolution mesh is much finer than the low-

res one, e.g. 1M versus 100, the shape of the cloth in that case is largely determined

by the aggregated e↵ect from details not captured by low-res simulation. Therefore,

I cannot recover the exact detail as in the serially simulated one at the transition

point, which is referred to as the ‘state inconsistency problem’. Enforcing the high-

res mesh to match the low-res one using the tracking solver [171] can e↵ectively avoid

this problem. So, it can lead the simulation result to follow the movement of low-res

one instead, which limits this approach from accuracy-demanding usage in those

extreme cases. However, for other usage such as rapid design prototyping, where

environmental constraints are mild and K is reasonable, motion di↵erence between

two levels is small and I can indeed achieve visually plausible results with high

speedup, which are shown in Fig. 5.10 and 5.11. Alternative methods to improve

the speedup without harming the accuracy is also discussed later in Sec.5.6.5.
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5.6 Results

My method is tested on a large computing cluster with 526 compute nodes,

each with 12-core (dual socket), 2.93 GHz Intel processors, 12M L3 cache (Model

X5670), and 48 GB memory at 2:1 ratio IB interconnect, MPI for communication.

I run one process in each of the cores (compactly assigned). I use up to 128 cores of

this cluster to show the linear scalability provided by my theory and up to 512 cores

to show the maximum possible speedup in large distributed systems. I could not

test on a larger number of cores due to a core limit of 512 per job locally. I use the

upsampling function by [74] throughout all of my experiments except in Table 5.4,

which uses linearly-interpolated subdivision for fast error computation. As stated in

Sec. 5.5.6, this method cannot guarantee the same accuracy as full simulation, which

often cannot guarantee the same accuracy as the physical systems. The objective of

this work is to generate visually plausible simulation to provide rapid visual feedback

for interactive applications, such as rapid design prototyping.

5.6.1 Parameter and Scenario Setting

As mentioned in Sec. 5.4.3, I control the general coarse-to-fine ratio by lim-

iting the smallest mesh size and enlarging the time step of the low-res simulation.

Specifically in all of my test cases, the smallest length size of the triangle in the

low-res simulation is about 5 times as large as that in the high-res one. The number

of iterations in each of the smoothing processes is set to be the same as that in

Sec. 5.5.4. I use ARCSim [74] as my base simulator, since it naturally supports
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adaptive mesh refinement with an e�cient remeshing algorithm. My method can

be used in other CPU-based simulators using uniform meshes as well, as long as

the upsampling algorithm is specified or implemented. All listed K in the following

tables are averaged values across the entire simulation. I show scaling results using

figures for clarity.

I use 7 di↵erent benchmarks to test the performance and the animation qual-

ity of my method: Blue Dress and Yellow Dress (Fig. 5.11(a,b)), Sphere

(Fig. 5.11(c)), Falling (Fig. 5.11(d)), Karate (Fig. 5.1), Twisting (Fig. 5.10(a))

and Funnel (Fig. 5.10(b)). The default setting is 20 second simulation at the low-

resolution time step of 0.02 sec using 128 cores. I extend the duration to 80 seconds

and decrease the time step to make comparisons and validate my theoretical analysis

on performance gain. Below are descriptions of each benchmark data.

To the best of my knowledge, previous works did not provide any code or

experimental data to public, so the best known practice is to use the reported

‘speedup data’ in other works with similar scenarios, to minimize the di↵erence

due to computing platforms or implementation. I use the timing data of ‘Two

Cloths Draped’ scenario from [152] since it has similar settings as mine (cloth-object

interaction), similarly with other benchmarks.

Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Original size speedup 74.1 75.0 102 116 96.4 92.3 93.8
4x large size speedup 99.6 109 178 119 103 101 108

Table 5.2: Results on a higher-resolution mesh. I run my system on meshes of higher
resolution. Values in the table are the corresponding speedup.
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Figure 5.5: Performance scaling result with large low-res time step. A nearly linear
scalability is achieved.

Figure 5.6: Results with increasing length of the simulation. A larger speedup is
observed with longer duration of simulation.

5.6.2 Performance

Nearly linear scalability w.r.t. the number of cores. As indicated

in Fig. 5.5, my method achieves a good scalability with an increasing number of

processors. The reason of the super-linear speedup in the ‘Sphere’ scene is that

it contains rapidly changing contacts with obstacles. When the cloth is free from

contact after the sphere passes through, the remeshing algorithm of ARCSim failed
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to simplify the mesh e↵ectively, spending an unnecessarily large amount of time

simulating simple flat cloth. However, due to the nature of my two-level structure, I

maintain a reasonably small number of mesh elements while preserving the quality,

and therefore outperform the serial approach significantly. I tested my method on a

higher-resolution mesh and observed an even better speedup (Table 5.2) due to the

same reason.

Improved scalability with increasing simulation duration. I show in Fig 5.6

that the scalability of my parallelized cloth simulation improves as the duration

of the simulation increases. Although the averaging e↵ect of the remaining load

imbalance may partially account for it, the most likely reason is from Eqn. 5.29. I

have relatively small speedup in 128-core parallelization when simulating a 20-second

simulation because the iterative detail recovery algorithm consumes a relatively

large amount of time according to Eqn. 5.29. Since the overhead is not dependent

on the duration of the simulation and my method is a time-domain parallelization

technique, the performance gain improves as the length of the simulation increases

due to a smaller portion of the overhead.

Cores 8 16 32 64 128
Uniform partition runtime(s) 5533 3010 1042 684 631
Adaptive partition runtime(s) 4721 2568 928 565 532

Speedup (%) 117 117 112 121 119

Table 5.3: Comparison between di↵erent partition schemes. Values in the table are
simulation runtime in seconds.

Performance impact on di↵erent choices of parameters. To verify my scal-

ability analysis in Sec. 5.4.3 and 5.5.4, I further ran my benchmark with much

smaller time steps in low-res simulation. As mentioned in Sec. 5.4.3, increasing
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Figure 5.7: Performance scaling result with small low-res time steps. Compared to
Fig. 5.5, the speedup for cases with core number larger than 32 is decreased, due
to the smaller time steps for low-res simulation.

low-resolution time step is one of the ways to increase the ratio of high-to-low-res

simulation time, K. Fig. 5.7 shows that smaller time steps in low-res simulation

leads to a sub-linear scaling in all datasets, starting from the 64-core configuration.

Although the ‘Sphere’ dataset has a bigger K due to its simplicity, the scalability

starts to degrade at 128 cores as well. The speedup still increases with the simu-

lation duration. However, as it is more closely bounded by K, the gain factor is

not as significant as that with large time steps. In practice, a large time step in

low-resolution simulations is beneficial to the parallelization performance, but it is

limited by (a) the embedded simulation method, (b) the duration of a single frame,

and (c) the desired animation quality.

Performance impact on di↵erent partition schemes. Table 5.3 shows that by

using my adaptive partitioning scheme, I achieve an average of about 120% speedup

compared to the uniform partitioned one with the best chosen parameter. In cases

such as rapid design prototyping, where the cloth is in continuous contact with
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Scenario Blue Dress Yellow Dress Sphere Falling Karate Twisting Funnel
Time step(low-res) 1/200s 1/100s 1/50s 1/125s
Time step(high-res) 1/200s 1/500s
# of faces(low-res) 5K 6K 8K 6K 4K 4K 4K
# of faces(high-res) 80K 95K 131K 94K 58K 65K 65K

# of triangles(obstacle) 20K 20K 1280 15K 28K 762 4K
K 165 170 172 60 99 188 794

Low-res speed (serial 1-core) 0.6 0.79 1 1.2 0.83 0.22 0.32
High-res speed(OpenMP 12-core) 32.2 44.3 55.9 23.2 27.6 13.7 86.7

My method 0.89 1.14 1.3 1.5 0.91 0.41 1.22
Error before detail recovery 11% 12% 3.2% 22% 29% 46% 16%
Error after detail recovery 4% 6% 0.6% 5% 9% 14% 7%

Table 5.4: Results in the extreme case. I use 512 cores to simulate these scenes.
Values in the table are in seconds per frame. The error metric is relative curva-
ture di↵erence compared to serial results in percentage. I use linear interpolated
subdivision for fast error comparison.

obstacles, the parameter K remains relatively stable. However, it is still di�cult

to compute K before simulation begins, since it depends on the specific mesh and

collision structure. Furthermore, it is best not to compute the parameter using the

first few frames, since the cloth at the beginning can be under constrained without

su�cient contact with the obstacles. My adaptive partitioning method here serves

as an on-the-fly parameter estimation algorithm in order to achieve good workload

balance.

Low-res speed with high-res mesh on a large distributed system. I further

test my method in extreme cases where K is relatively small compared to p, which

is possible in practice when the computational resources are su�cient. The runtime

result is shown in Table 5.4. Although I cannot achieve a speedup as high as 512

due to the limitation of K, I have actually met the upper bound. The serial low-

resolution simulation has consumed most of the time so there is very little space to

improve in my scheme.

Comparison with previous CPU parallelization work. I compare the perfor-

mance of my method against other CPU parallelization techniques. Fig. 5.8 shows
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that in smaller-scale systems (less than 16 cores), my method can maintain a linear

speedup with respect to the single-core system, scaling better compared to previ-

ous CPU-based methods using spatial-domain partitioning, e.g. 11x over 16 cores

by [154]. For larger-scale systems (Fig. 5.9), I achieved about 50% more e�ciency

than previous methods such as [152]. In these methods, the processors need to send

the information to each other, typically several times, when solving the linear sys-

tem, resulting in large communication overhead and limited scalability. In contrast,

my method only needs to share the states from low-resolution simulations once.

Therefore, my method can achieve greater scalability and e�ciency in comparison.

In addition, I compare my method with the original embedded OpenMP ver-

sion of ARCSim. Although a maximum of 2.69x is observed using OpenMP with

2 cores due to a better cache usage in the linear solver, the performance scaling

is poor when adding more cores, which results from that the simulation algorithm

does not parallelize the remeshing process due to memory access issues. My method

disables the OpenMP feature in the ARCSim. Since I parallelize the simulation

in time domain, I can avoid memory access control problems, thereby achieving a

better speedup.

Method Speedup over sequential ArcSim [74] Supports Adaptive Mesh?
Tang et al. [153] 47-58x No

My method(64-core) 50-75x Yes
My method(128-core) 75-115x Yes
My method(512-core) 91-214x Yes

Table 5.5: Comparison with GPU method [153]. Other than the scalable
speedup gain with more cores, the method is able to naturally support adaptive
mesh during the simulation.

Comparison with GPU-based parallelization. Using similar benchmarks as [153],
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Figure 5.8: Small scale parallelization comparison. My method (in blue solid line)
achieves a linear speedup, while others are limited by the communication overhead
due to spatial domain partitioning.

Figure 5.9: Large scale parallelization comparison. My method (in blue solid line)
achieves about 50% higher e�ciency than [152] using dynamic workload balancing.

the speedup of my method in a 64-core system configuration is up to 54x in prac-

tical scenarios compared to the original ARCSim implementation on a single-core

system and achieves a performance gain comparable to the GPU parallelization of

[153] (Table. 5.5). However, my method has other distinctive strengths compared

to the GPU method. Mine is the first work that can couple an adaptive mesh of

varying dimensions during the simulation. I use the same number of triangles for
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(a) Twisting (b) Funnel

Figure 5.10: More simulation results (best view with zoom-in in PDF). I have
achieved visually plausible and smooth results even in challenging cases involving
frequent contacts.

performance comparison, but in practice I can produce similar visual granularity

with much fewer triangles using adaptive mesh [74], thereby making my method

even faster. Moreover, my performance can be further improved using more cores

and a longer simulation sequence, as shown in Fig 5.5 and 5.6.

(a) Blue Dress (b) Yellow Dress

(c) Sphere (d) Falling

Figure 5.11: Refining results (best view with zoom-in in PDF). The left image in
each of the example is the upsampled meshwithout detail recovery, which lacks high
frequency details and causes ‘popping’ artifacts. The right one is the corresponding
mesh using my method.
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5.6.3 Smoothness

Fig. 5.11 and Table 5.4 shows the results before and after the refining algo-

rithm is applied. If directly using the results from the upsampling algorithm, the

detail of the cloth is significantly di↵erent from the correct one and therefore in-

troduces popping artifacts. After applying the iterative smoothing algorithm, the

high frequency information is recovered. I use average curvature distance defined

in Eqn. 5.30 to measure the error between the recovered mesh and the original,

high-res one simulated using ARCSim on a single core.

E =

P
f1,f22F |curv(f1, f2)� curv(f̃1, f̃2)|P

f1,f22F |curv(f1, f2)|
(5.30)

where f1, f2 are two adjacent faces in the original mesh, and f̃1, f̃2 are two cor-

responding faces in my simulation result. I disable remeshing and use linearly-

interpolated subdivision for fast comparison. A larger value of the curvature error

indicates a sharper edge in the corresponding position and thus a potential artifact.

Before my recovery method, a relative error up to 46% is observed, which can cause

large ‘popping’ artifacts in the result animation (Fig. 5.11). By using my technique,

the error has decreased by 2-5 times, which is a significant improvement.

5.6.4 Memory and Render Latency

The extra memory footprint introduced by my method is small compared to

the high-res mesh. In my experiments, the low-res mesh storage is 5.5% of the high-
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res one. I do not render the low-res simulation in my method, and it actually starts

at the same time with the first partition of the high-res one. Therefore, my method

does not introduce any latency compared to the full-res simulation. In fact, I have

achieved a ‘pre-fetch’ e↵ect for the subsequent partitions due to the very fast, low-

res simulation, thereby reducing any potential latency introduced by non-real-time

simulation.

5.6.5 Limitations

There are some limitations with this method. First of all, the performance

gain is bounded by the ratio of low- to high-resolution simulation time. Other than

accelerating the simulation through parallelization in the temporal domain, I can

additionally employ GPU implementation to further improve the overall gain. With

a factor of 50x speedup from GPU [153] and a su�cient number of processors to

parallelize the high-resolution simulation, it is possible to accelerate the performance

even further. Secondly, the runtime of my method is bounded by a single-step high-

resolution simulation time. This implies that at least one simulation step must take

place in order to see the result. However, my method accelerates the overall per-

formance, so I can actually achieve ‘pseudo-interactivity’, where the user can have

a very fast visual feedback in parallel. Another possible direction is to implement a

hybrid domain decomposition scheme, allocating some processors for spatial-domain

parallelization to accelerate the single-step runtime. My approach provides plausi-

ble visual results in practical real-time applications, like rapid design prototyping.
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However, as stated in Sec. 5.5.6, This approach may not be suitable in applica-

tions requiring high precision. In practice, the resulting cloth can sometimes appear

slightly sti↵er than the original one.

5.7 Conclusion and Future Work

In this chapter, I introduce a novel temporal-domain parallelization method for

practical cloth simulation such as rapid design prototyping. Taking the advantage of

faster simulations on coarser meshes, I parallelize the cloth simulation in time with

accelerated computation and minimal communication overhead. I also proposed

an iterative detail recovery algorithm to minimize the visual artifacts due to the

state transitioning from coarse to fine meshes. My method outperforms existing

CPU- and GPU-based parallelization techniques on a diverse set of benchmarks.

It o↵ers high e�ciency and nearly linear scalability on large distributed systems,

while maintaining high-fidelity visual simulation of the cloth. The scalability of

my method is dependent on the ratio of low- to high-resolution simulation time,

the length of the simulation, and persistence of contacts with obstacles. Since this

method utilizes only time-domain parallelization, a natural extension would be a

hybrid decomposition scheme that may provide a potential usage in short-duration

simulation or in circumstances with memory constraint.

This work has been published in the proceedings of ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (SCA) 2018.
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