
Chapter 6: Dynamics-Inspired Garment Draping Prediction

6.1 Introduction

Other than accelerated cloth simulation proposed in Chapter 5, one can also

use deep learning to directly predict the garment draping given the body as input.

This approach o↵ers real-time feedback to the user guaranteed by GPU-based net-

work inference. Within the training distribution, learning-based methods can also

produce draping results as good as simulated ones, accurately revealing information,

such as fitting and material perception.

Figure 6.1: My model learns how to drape garments in two stages: first supervising
the network with a physics-inspired loss, then optimizing the output according to
the physics of specified garments, such as new print shapes or materials, in a self-
correcting way.

However, there exists a number of major challenges for interactive learning-
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based virtual try-on. First, it is well-known that machine learning models tend

to produce overly smoothed results when using per-vertex distances as their main

loss [11, 180, 181]. Although previous works [11] addressed this issue to some ex-

tent, they are limited to a narrow set of shapes composed of nine distinct bodies.

Next, while garments are often composed of di↵erent materials (e.g . the frontal

graphics print in T-shirts), existing works typically model a single one because it

is impractical to consider all combinations of di↵erent graphics prints shapes at

training time. Finally, it is expected that the garments predicted by the network

model is fit-accurate, although the most common losses in related work (per-vertex

geometry errors) do not necessarily entail fit accuracy. This translates into changes

in the overall shape of the garment and violations to its material properties.

In this chapter, I propose a novel semi-supervised framework to address all

issues above. One key idea is that physical constraints can be reformulated as

geometric loss functions that can be optimized during training. However, using

the exact physical loss functions from scratch does not result in good draping due

to their complexity. Therefore, I first train my model with supervised, physics-

inspired loss functions, and then optimize the model output individually for each

sample to conserve the actual physical energy and minimize/eliminate geometric

intersections. Given their superior quality compared to the initial predictions, the

resulting optimized samples can then be re-used to further improve the initial feed-

forward network.

Overall, the key contributions of this work include:
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• A semi-supervised framework that enables easy integration of constraints into

the deep learning model.

• Introduction of novel loss functions that encode geometric, physical, design,

and tailoring constraints.

• A novel encoder/decoder network that e↵ectively captures global and local

features from the input and dynamically aggregates neighborhood information.

• A new self-correcting method based on data augmentation that enables both

more accurate predictions and reduced data preparation time.

6.2 Related Work

Drape prediction systems fall mainly in three categories: physics-based simu-

lation, learning-based garment generation, and direct estimation of garments from

real-world.

Physics-based Cloth Simulation. Physics-based garment simulation systems

usually include spatial discretization [27, 91] and di↵erent forms of simulations [24,

182]. Although several techniques have been proposed to speed up cloth simulation,

including GPU acceleration [162, 183], spatial and temporal parallelization [152,

170, 184, 185], and other techniques [186, 187, 188], real-time, physically accurate

cloth dynamics for any given human shape remains illusive [74].

To reduce computation time, several works produce high frequency wrinkles

on low-resolution meshes as a practical trade-o↵ [173, 178, 186, 189, 190], but are
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typically limited to tight garments. In tight garments, cloth material and overall

drape have a negligible e↵ect in the wrinkles. In contrast, my feed-forward model

can achieve real-time performance even when generating high-resolution garments.

Inspired from optimization-based simulation [191], I use the physics-based metrics

as some of the loss functions, resulting in realistic folds and wrinkles.

Learning-based Garment Draping. As a faster alternative to simulation, learning-

based approaches have been developed for draping garments with better visual

quality and realism, including normal map generation [124], KNN body-garment

fusion [8], wrinkle-assisted design [9], displacement regression [192, 193], motion-

conditioned auto-encoder [194], and least-square approximation [195]. However,

these works are limited in di↵erent aspects: [124] do not provide geometric de-

tails; [8, 193, 195] generate relatively smoothed results; [193, 194, 195] do not gener-

alize to a wide range of body shapes; [9] requires user knowledge of wrinkle formation;

and [192] cannot deal with loose clothing and produces a single mesh containing both

body and garment fused. In contrast, my method takes only a human body mesh

as input and directly regresses the garment mesh as output with realistic geometric

details.

Other works tackle the same task as my system does. Santesteban et al . [180]

used RNN to capture the motion-dependent garment shapes on the body. Vidaurre

et al . [181] extended the approach to cover more size variations of di↵erent design

parts. Since [180, 181] supervise their methods with a pure per-vertex distance loss,

their model su↵ers from smoothed folds especially when the garment is loose. To
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remedy the smoothing e↵ect, Patel et al . [11] interpolated high frequency results

from di↵erent anchors based on the inverse of per-vertex distances between garment

predictions on the canonical pose. Despite its success, it is based on a limited discrete

set of training shapes, which can pose generalization problems as can be observed in

Sec. 6.5.6. In contrast to the three methods above, I design an exhaustive set of loss

functions inspired by physics constraints, including the minimization of di↵erences

in the spectral domain.

Garment Capture and Estimation. Instead of simulating garments, some sys-

tems capture garments from real-world data. These systems focus on inferring the

mesh geometry using visual features and retargeting it to the desired body. State-

of-the-art methods have varying types of input, including images [12, 68, 110, 116,

120, 121, 196], mesh scans [22, 197], RGB videos [2, 198], or videos together with

the depth channel [122, 199]. Despite the appeal of avoiding altogether physical

simulation in both train and test stages, capturing methods still have a number of

drawbacks. First, it is hard to collect a dataset large enough to train a model that

can cover the large variation of human shapes. Moreover, simple retargeting often

fails to account for non-rigid and non-linear transitions of the garment deforma-

tion between di↵erent bodies. Note that there is an intrinsic di↵erence between my

method and capture systems: while my method focuses on generating drapes given

just the underlying body, capture methods extract the garment from existing media.
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6.3 Method

In this work, I focus on a wide range of human body sizes rather than di↵erent

poses. To this end, I used the SMPL model [30] to generate a set of 20,000 bodies

of varied male shapes (see supp. mat. for the equivalent female model) following

a uniform distribution of BMIs between 15 and 65, all with the same A-pose. In

comparison, my analysis indicates that from the 9 discrete bodies used by Tailor-

Net [11] only one has a BMI over 30. Given that 42.4% of the population in the

US has obesity (BMI > 30) [200], TailorNet does not have enough coverage on large

bodies.

Figure 6.2: Overall structure of my network. I use 1D CNN as my encoder and
Graph Convolutional Network (GCN) as the decoder with four di↵erent resolutions.
I additionally employ an MLP-based spectral decoder for high frequency preserva-
tion.

The overall structure of my network is shown in Fig. 6.2. I first pass the

ordered vertex coordinates of the body to a 1D CNN network to extract features

(Sec. 6.3.1). Next, I transform the features corresponding to vertices in the body

using 1-layer MLP, and distribute them to the vertices of the garment according to
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fixed correspondences between body and garment. I design a resolution hierarchy

for the Graph Convolutional Network (GCN) decoder to capture both global and

local information (Sec. 6.3.2). To improve the higher frequency wrinkles, I finally

introduce an MLP branch that predicts the garment residuals in the spectral domain

(Sec. 6.3.3). The losses used for training this network are described in Sec. 6.3.4.

6.3.1 Encoder

Figure 6.3: Visualization of the eigenvectors and their eigenvalues. Red denotes
large weights, blue small ones.

Unlike PointNet [99], which obviates the vertices order by spatially pooling

its features, I would like to exploit the fixed topology of the input SMPL vertices.

Since the input mesh does not have a neighbor structure constant across vertices, a

natural choice for this would be a GCN. However, in Sec. 6.5.2 I show that my simpler

alternative, a 1D CNN, empirically outperforms the GCN. I hypothesize that this

might be due to the large amount of model capacity devoted to body parts unrelated

to the garment (i.e. head, hands, etc). In practice, using a 1D CNN on the original

SMPL vertex order is more e�cient and captures most SMPL neighborhoods, since
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91.24% of the SMPL vertices have their adjacent indexed neighbors being adjacent

in topology, and 94.01% are at most two-hops away.

6.3.2 GCN-Based Decoder

Following a similar reasoning as in the previous section, I would like to cap-

ture local relations between the garment vertex neighborhoods. Therefore, I use a

graph convolutional network in the decoder. A common graph convolutional layer

is defined as:

y = f✓(Ax) (6.1)

where A is the aggregation matrix which collects and processes the information in

the neighborhood in an isotropic way, and f✓ is the nonlinear activation function

for feature extraction. The expressiveness of this network is inherently limited since

the constant aggregation matrix cannot adapt its neighbor aggregation weights.

Attention-based GCN [201] addresses this issue by proposing an MLP to estimate

the aggregation parameters given the vertex features:

y = f✓1(A✓2x) (6.2)

A✓2 [i, j] = MLP (xi,xj) (6.3)
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In contrast, I propose to learn the aggregation parameters independently per vertex,

without an explicit dependence on the features:

A✓2 [i, j] = ✓2[i, j] (6.4)

Another particularity of my decoder is its hierarchical nature. Analogous to

up-scaling in 2D image generation, feeding the encoded features to a coarsened mesh

helps distributing global features to broader regions of the garment. To linearly

upsample the features, I use the barycentric weights of the corresponding higher

resolution vertices with respect to the lower resolution ones, all in UV space. I use

four resolutions in the decoder for all experiments.

6.3.3 Spectral Domain Decomposition

Simulation systems are known to be input-sensitive; negligible di↵erences in

the input or initialization can result in substantial di↵erences in the outputs, spe-

cially in the high frequency domain. Supervision on vertex positions tends to average

those multiple possible outcomes, smoothing out its predictions. However, the high

frequency content of the garment is critical for garment perception, since it is highly

correlated to garment materials and tightness. This motivates the need to inspect

the spectral components of the garment mesh [202]. Specifically, I apply the eigen

decomposition on the Laplacian operator:

L = UDU�1 (6.5)
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where U 2 Rn⇤n and D are the eigenvectors and the diagonal matrix of the eigen-

values. I pick the subset of eigenvectors V 2 Rn⇤k corresponding to the smallest

k eigenvalues. The spectral coe�cients of a mesh c = V>x thereby represent the

mesh components with lowest impact on Laplacian values. This method rejects the

highest frequencies (typically noisy) since high frequency entails large local changes,

which have a large impact in the Laplacian (and therefore large eigenvalues). The

visualization of the eigenvectors is shown in Fig. 6.3.

Figure 6.4: Reconstructions for di↵erent numbers of coe�cients.

This spectral decomposition is used by introducing an MLP-based branch in

the decoder network to account for residuals of the spectral components. I output

the coe�cients �c of the 4,000 eigenvectors with the smallest eigenvalues, which are

su�cient for reconstruction (see Fig. 6.4). These coe�cients are then transferred

back to the spatial domain �x = V�c and added to the final result.

I also introduce a spectral loss during training. This loss ensures that high

frequency components, which typically result in small vertex displacements, deserve

proper attention in the supervision of my model.
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6.3.4 Loss Functions

I design a number of loss functions to supervise and guide the model towards

realistic outputs. First of all, I split the output into a correspondence point set and

a displacement map:

x = cx + dx y = cy + dy (6.6)

where c are the correspondence (closest) points on the body surface and d are the

displacements w.r.t. the correspondence, and ⇤x represents the prediction while ⇤y

represents the ground-truth. This partition of garment into body plus displacement

is common in the literature [11, 196], but here it enables an important direction loss

that prevents intersections and preserves normals:

Ldir = R(�n>(cx � cy)

kcx � cyk
) + (1� (x� cy)>dy

kx� cykkdyk
) (6.7)

where R denotes relu, and n is the normal direction at cy. The first part of the

direction loss constrains the correspondence to be outside of the body, while the sec-

ond part constrains the direction of the prediction to be similar to the ground-truth.

Since cy is defined as the closest point on the body surface to the garment vertex x,

minimizing the direction loss can help generate results with fewer intersections and

better normal consistency.

I also use per-vertex L1 di↵erence of these two components separately to su-
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pervise the overall shape:

LV 2V = kcx � cyk1 + kdx � dyk1 (6.8)

Additionally, I applied physics-based losses to learn the correct deformation

of the garment. The key idea here is to transfer the physics constraints applied in

simulation to geometric di↵erences. I choose two aspects that reflect the physics:

edge lengths and deformation gradients. First, the edge loss measures the di↵erence

of the edge lengths relative to the ground-truth:

Le =
1

|E|
X

(u,v)2E

|kux � vxk � kuy � vyk|
kuy � vyk

(6.9)

where ⇤x are the predictions and ⇤y are the ground-truths, and E is the edge set of

the mesh. This loss guides the model to generate more wrinkles because smoothed

results often have smaller overall circumference (thereby larger Ledge) than ground-

truths. Additionally, I define a loss that supervises on the di↵erence of the defor-

mation gradient of each face in the mesh:

Ld =
X

f2M

kFx(f)� Fy(f)k1 (6.10)

Fx(f) = x(f)X�1(f) (6.11)

where F(f) is the deformation gradient [203] of face f in the mesh M, defined as

the change of the world-space coordinates (x) per unit change of the material-space
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coordinates (X) within each triangle. This loss is less intuitive than the edge loss, but

provides better alignment to the ground-truth regarding the potential energy and

the internal forces it generates. For example, the deformation gradient can represent

the shear stress and bulk stress separately, while the edge-based loss cannot.

To capture the curvature and higher frequency errors, I further define a Lapla-

cian Di↵erence loss, and a spectral loss as described in Sec. 6.3.3:

Ll =
3X

k=0

kLk(x� y)k1 (6.12)

Ls = kV>(x� y)k1 (6.13)

where Lk is the Laplacian operator on the mesh graph at the k-th resolution, and

V are the eigenvectors of the Laplacian operator on the original mesh defined in

Sec. 6.3.3. I apply the Laplacian di↵erence loss in di↵erent resolutions to account

for wrinkles and folds of di↵erent sizes.

The total loss is the sum of all losses defined above:

L = LV 2V + Ldir + Le + Ld + Ll + Ls (6.14)

6.4 Physics-Enforced Optimization

During inference on unseen input bodies, it is likely that the drape prediction

does not reach a stable dynamical state because the corresponding potential energy

may not be fully minimized in all cases. More importantly, it is not uncommon
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in practical try-on applications that the garment is composed of materials di↵erent

from the ones used in training. For example, a frontal graphic print of a T-shirt is

usually sti↵er and heavier than the rest of T-shirt. In theory such situations could

be solved by training with the appropriate data, but this solution turns impractical

when I consider not only a large variety of graphics print shapes for garments, but

further more the infinite variety of them in services that allow you to create your

own print.

To address the problems above, I propose to optimize the inferred models

on specific samples at runtime. I finetune the network weights for each sample to

minimize the potential loss of the garment defined below:

Lp = Lg + Lst + Lb (6.15)

Lg =
X

v2M

m(v)g>x(v) (6.16)

Lst =
X

f2M

S(f) Lb =
X

e2M

B(e) (6.17)

where Lp, Lg, Lst, and Lb are the potential loss functions and its components:

gravity, stretching, and bending energy, respectively. M is the predicted mesh,

m(v) and x(v) is the mass and coordinates of vertex v, S(f) is the stretching energy

of face f , and B(e) is the bending energy of two adjacent faces with common edge

e. I follow the definitions of the stretching and bending energy from the simulator

I used [74]. In short, material sti↵ness coe�cients are multiplied to elements in the

Green Strain of f and the curvature of e, respectively. To make the optimization
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collision-aware, I introduce a penetration loss function [8].

Figure 6.5: The semi-supervised self-correcting training pipeline.

The proposed optimization step serves two purposes in my pipeline. First,

it can be used to generate better training data. I empirically show in Table 6.5

that my optimization generates garments with lower potential than the simulated

data, even when both are initialized with my network. My hypothesis is that the

lack of hard penetration constraints and kinematic limits helps my optimization

find a more stable state. Re-training the network with this data can be regarded

as self-correcting unsupervised learning since the training data has been produced

by the previous network, turning the entire pipeline into a semi-supervised learning

framework.

Second, it can be adapted to materials that are not covered by the original

model, which covers homogeneous T-shirts. The optimization allows us to predict

drapes where the T-shirts contain graphic prints with di↵erent shapes and materials

(Fig. 6.1). To achieve this, I simply minimize the potential loss of the new system

containing the new graphic print. Results in Sec. 6.5 show that the optimization is

indeed e↵ective in performing these two tasks.
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6.5 Experiments

I conduct several experiments to evaluate my method, including ablation stud-

ies testing several di↵erent configuration of my system, accuracy tests of the physics

optimization, comparisons with previous work, and generalization over multiple T-

shirt sizes.

6.5.1 Data Generation

I use the SMPL [30] body model to generate my input dataset. Shape param-

eters are sampled following a uniform distribution in BMI space with range from

10 to 65 (see Fig. 6.6). In terms of pose, I restrict myself to a fixed A-pose to

concentrate on a wide shape variation.

Figure 6.6: Bodies at BMI percentiles 10, 30, 50, 70 and 90%.

I use the T-shirt from TailorNet [11] as my garment template, after retopolo-

gizing it to generate a proper UV template for simulation. To generate the ground-

truth garments, I initialize the garment to a precomputed configuration coherent

with the T-pose average SMPL body. ArcSim [74] is used to simulate the garment

movements while the body is linearly morphed into the target shape with A-pose.
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The body morphing lasts for two simulation seconds in total, and ArcSim contin-

ues to simulate the garment dynamics on the body for two more seconds to obtain

stable results. In total, I generate 20,000 such human bodies and garments, where

the training/validation/test split is 8:1:1 (for this reason the tables are annotated

as 16k for the full dataset of 20000 samples).

6.5.2 Ablation Study

In this section I evaluate di↵erent components of my method in terms of the

loss functions defined in Sec. 6.3.4 except from LV 2V , which is replaced by the more

intuitive mean euclidean distance (ME). I also track the ratio of all garment vertices

which are intersected with the human body, p. In the tests in this section, all system

components are held constant except for the one being tested.

Encoder. In this experiment my 1D CNN encoder is replaced with other approaches

like PointNet [99], the original GCN [204] and my modified GCN (see Sec. 6.3.2),

where I replaced upsampling for downsampling operations. Table 6.1 shows that

my CNN encoder outperforms other approaches. GCN performs worst because a

large part of its capacity is used in feature extraction on body regions of the body

irrelevant for my task (e.g . hands and feet).

Encoder Type ME (cm) Ll (cm) Le (%) Ls Ld p (%)

PointNet [99] 0.35 0.16 9.36 1.1e-3 4.6e-3 0.05
GCN [204] 0.45 0.18 10.32 1.2e-3 5.1e-3 0.1
GCN (mine) 0.36 0.16 9.54 1.1e-3 4.7e-3 0.05

CNN (mine) 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Table 6.1: Encoders ablation. ME stands for Mean Euclidean.
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Decoder. For comparison, I replaced my multi-scale GCN decoder (see Sec. 6.3.2)

with a 2D CNN decoder that represents the garment in UV space [124], an MLP,

and the original GCN [204]. My final model achieves the best results in most of the

metrics, especially when adding the spectral residual connection. Although the 2D

CNN decoder have slightly smaller intersection rates than mine, its large errors in

terms of edge lengths and face deformations indicates that the model fails to learn

the dynamics of the garment.

Decoder Type ME (cm) Ll (cm) Le (%) Ls Ld p (%)

2D CNN 0.54 0.49 39.45 2.0e-3 22.2e-3 0.04
MLP 1.62 0.25 15.71 2.0e-3 7.5e-3 6.96

1D CNN 5.02 0.38 24.51 3.2e-3 11.6e-3 24.67
GCN (original) 1.92 0.41 37.01 3.5e-3 19.8e-3 2.56

GCN (mine) 0.34 0.16 9.36 1.1e-3 4.6e-3 0.06
GCN (mine) + spec 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Table 6.2: Decoders ablation. ME stands for Mean Euclidean.

Loss functions. I verify the e↵ectiveness of my loss functions by comparing the

test metrics of the learned model when disabling the loss functions one at a time.

The main baseline is the per-vertex L2 loss commonly used in previous works [11,

180, 181]. As shown in Table 6.3, all my designed loss functions contribute to smaller

overall errors. It can be observed that the intersection ratio is drastically reduced

simply by replacing the baseline L2 loss to LV 2V that trains the correspondence

and displacement separately (Eqn. 6.8). Introducing the direction loss Ldir further

reduces the intersection close to their minimum. The losses related to local shape

(Lp), deformations (Le and Ld), and spectral energy (Ls) are reduced by introducing

the rest of the losses, with negligible negative e↵ects in other metrics.
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Loss Functions ME (cm) Ll (cm) Le (%) Ls Ld p (%)

Lbase = L2 0.4 0.21 12.35 1.2e-3 6.3e-3 2.05

L0 = LV 2V 0.33 0.21 12.93 1.2e-3 6.7e-3 0.41
L1 = L0 + Ldir 0.37 0.23 13.93 1.3e-3 7.2e-3 0.04
L2 = L1 + Ll 0.36 0.18 11.39 1.2e-3 5.7e-3 0.03
L3 = L2 + Le 0.35 0.16 9.55 1.1e-3 4.7e-3 0.04
L4 = L3 + Ls 0.34 0.16 9.36 1.1e-3 4.6e-3 0.04

L5 = L4 + Ld (mine) 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Table 6.3: Losses ablation. ME stands for Mean Euclidean.

6.5.3 Optimization for Semi-Supervision

This section show how my optimization method described in Section 6.4 not

only adapts to novel runtime conditions, but also allows us to train a system which

achieves high accuracy and fast inference with less data. To validate this, I train

my model with 25% amount of the original simulated training data (4,000 samples),

and re-generate a full dataset (16,000 samples) where each sample is computed by

a 100-iteration optimization from the model prediction. Keeping body input and

train/validation/test split exactly the same, I train an additional model based on

the new dataset and compare the performance to the model that is trained on the

original one.

The test results are shown in Table 6.4. The initial models are denoted as 4k

and 16k regarding di↵erent training data sizes, optimized results are marked with

-opt, and 4k-retrain is my retrained model on the optimized data. I evaluate the

systems in terms of realism, training and inference time. Realism is evaluated in

terms of percentage of intersections and the potential defined in Eqn. 6.15. I use this

potential since the original physically simulated garments are not physically optimal

and therefore the comparison in terms of per-vertex distance is misleading. The end-

to-end training time denotes the total time needed to generate the first sample. For
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example, for 4k-retrain it is the sum of the times from simulation (2,666 hours), 4k

training (3 hours), the optimization of all samples (31 hours), and final retraining

(10 hours).

Training with more data results in higher accuracy but longer training times.

After optimization, the total potential decreases and remaining intersections are

resolved. Although optimization is faster than the simulator, it is prohibitively slow

for real time applications. By using the optimized samples for the retrained network,

I achieve real-time performance with a fairly competitive physical accuracy. Note

that by retraining my system with only 4,000 samples (4k-retrain), my end-to-end

training time is shorter than that of the original system trained on 16,000 samples.

Models Lp p (%)
End-to-end

training time (h)
Inference
time

Simulation 1.0e-4 0.00 0 40min

4k 8.8e-5 0.1 2,669
17 ms

16k 7.5e-5 0.05 10,677

4k-opt 4.3e-5 0.00 2,669
7 s

16k-opt 4.1e-5 0.00 10,677

4k-retrain 5.6e-5 0.04 2,710 17 ms

Table 6.4: Self-correcting pipeline ablation study. Training with more data (16k
vs. 4k) results in higher accuracy but longer end-to-end training time due to data
generation. My optimization (-opt) improves the performance but has long inference
time. Re-training on the optimized data (4k-retrain) achieves small test errors, short
training time and real-time inference.

6.5.4 Optimization for Graphic Print

The optimization method enables the draping adaptation to unseen material

designs. In this experiment, I generate two datasets, one with a sti↵er and denser

graphic print on the T-shirt front and one without. I train two models from the
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datasets separately as the baselines, and also run the optimization process on the

model trained with blank T-shirts to adapt to the new print. In this experiment

I consider the potential Lp according to the materials of the T-shirt with a frontal

graphic print for both optimization and evaluation. I run this process over all the

bodies in my test set.

Table 6.5 shows that training with the correct o✏ine data helps reduce mini-

mally the potential, but the optimization achieves a much stronger error reduction.

A qualitative example is also shown in Fig. 6.7, where it can be observed that the

frontal print forms di↵erent wrinkles in the simulation, which are correctly captured

in the optimized result. This process enables model generalization at runtime with-

out new data generation, which is crutial if the amount of material configurations

is very largely or simply unknown at training time. Note that simulation initial-

ized from the model prediction is not only slower, but also less accurate than my

optimized results.

Models Lst Lb Lg Lp Runtime p(%)

w/o Print 7.6e-5 4.5e-7 -9.2e-7 7.5e-5 17ms 0.05
w/ Print 7.5e-5 4.4e-7 -9.2e-7 7.4e-5 17ms 0.05
Optimized 4.2e-5 5.1e-7 -7.8e-7 4.1e-5 7s 0.00
Simulated 1.7e-4 6.2e-7 -9.6e-7 1.7e-4 40min 0.00

Table 6.5: Adaptation to new materials. The optimized results is better than the
network estimations and the simulation initialized with the model predictions with
print, while still being 342x faster.
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Figure 6.7: Qualitative examples of self-correcting optimization. My method can
adapt the model to unseen materials.

6.5.5 Quantitative Comparisons

I compare quantitatively my system (16k in Table 6.4) with the system most

closely related to mine, TailorNet [11]. Unfortunately I cannot compare to other

relevant systems like [180, 181] since they do not provide publicly available code or

data; however, a qualitative comparison is provided in Sec. 6.5.6 for completeness.

As discussed in Sec. 6.2, remaining works do not fall into the same category as mine,

so I do not include them for comparison.

I compare against Tailornet retrained on my own data. Note that for my

new dataset, each of the anchor shapes contains a single pose, so learned weighted

sum of anchor-based high frequency prediction becomes a learned weighted sum

of fixed garments (Table 6.6 w/ anchor). To provide more capacity to the high

frequency network, I propose an alternative which trains a single high frequency

network without anchors (Table 6.6 w/o anchor). The original Tailornet could not

be used for quantitative comparison since I had to retopologize their template to

create a UV map, resulting in a di↵erent vertex count. As shown in Table 6.6, my

method outperforms TailorNet versions in all test metrics, reducing the errors by
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44% (Ll) to 98% (p). I believe the decoder and the loss from TailorNet are the

causes of this gap. First, my GCN decoder with learned aggregation outperforms

their MLP decoder. Second, I have shown in Sec. 6.5.2 that the per-vertex distance

loss from TailorNet is outperformed by my physics-inspired loss.

Methods ME (cm) Ll (cm) Le (%) Ls Ld p (%)

[11] w/ anchor 1.4 0.4 26.59 2.5e-3 14.1e-3 4.89
[11]-post 1.4 0.4 26.4 2.5e-3 14.0e-3 0.03

[11] w/o anchor 1.36 0.29 17.65 2.1e-3 8.8e-3 3.1

Mine 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05

Improvement 75% 44% 47% 52% 48% 98%

Table 6.6: Comparison with TailorNet retrained with my dataset with high fre-
quency discrete anchors (w/ anchor), after applying its post-processing (-post), and
without them (w/o anchor). My method reduces the error metrics by 44% to 98%.

6.5.6 Qualitative Results

I compare my model (16k in Table 6.4) qualitatively with previous works [11,

180, 181]. A comparison against Tailornet trained on my dataset is shown in Fig. 6.8.

In a few examples where the garment roughly fits the body (Column 1, 2), TailorNet

successfully predicts good results without too many intersections. However, my

prediction results are still visually better due to realization of steeper wrinkles.

In other cases, TailorNet fails to provide collision-free results, and the garments

are unrealistically crumpled. In contrast, my method provides realistic folds and

wrinkles of the garment that follow the dynamics with the body shape.

I also tried my best to compare my results with other two works where code

is not available [180, 181]. I took their original figures and generated my drapes

for similar body shape. Based on the results in Fig 6.9, I hypothesize that their
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Figure 6.8: Qualitative comparison with TailorNet. My model captures better gar-
ment shapes regarding global fold structures, normal consistency, fine wrinkle de-
tails, and collision avoidance.

per-vertex loss generates smoother garments with less rich wrinkles. However, I

should note that there are substantial di↵erences in terms of T-shirt size, topology

and materials, so this comparison is far from definitive.

6.5.7 Generalization to Di↵erent Garment Sizes

This section shows the potential of my model to generalize to di↵erent sizes

of the garment. I simulate a smaller T-shirt of the same topology on the original
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[181] Mine [180] Mine

Figure 6.9: Qualitative comparison with [180, 181]. My model generates finer wrin-
kles around the waist and armpits.

20,000 body samples. I train three di↵erent models based on 16,000 small T-shirts,

16,000 original T-shirts, and 32,000 T-shirt of both sizes, and tested them either

against the small or original size set, both of them with 2,000 samples. When the

network is trained on all the data, the T-shirt size is indicated to the network by

simply introducing a flag to the encoded features without any further modifications.

As shown in Table 6.7, the model trained on both sizes preserves similar accuracy

to the ones trained separately, only slightly worse due to the higher complexity of

the task. To improve the results, one possible solution is to train an auto-encoder

for a set of garment templates and inject the latent code as the feature. I leave this

exploration as future work.

Train-Test Set ME (cm) Ll (cm) Le (%) Ls Ld p (%)

Small-Small 0.34 0.16 9.26 1.1e-3 4.5e-3 0.09
Both-Small 0.56 0.19 11.28 1.3e-3 5.5e-3 0.41

Original-Original 0.33 0.16 9.21 1.0e-3 4.5e-3 0.05
Both-Original 0.34 0.16 9.43 1.1e-3 4.6e-3 0.05

Table 6.7: Comparison for models trained on di↵erent sizes of the garments; A-
B means train on A and tested on B. The model trained on both sizes achieves
comparable results.
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6.6 Conclusion

I propose a novel network structure and semi-supervised framework to learn

realistic fit-accurate garment draping on a wide range of human body sizes. I uti-

lize physics-enforced loss functions and a more expressive GCN decoder during the

initial training. Next, a self-correcting optimization method that minimizes the po-

tential energy is proposed to fix the remaining violation of physical laws. Retraining

my original network with the optimized samples makes its predictions even more

physically accurate. Experimental results show that my method outperforms the

state of the art regarding physical realism, dynamics-dependent wrinkle formation,

and collision avoidance.

One limitation of this work is that my model currently only supports a canon-

ical body pose. In future work I am planning to support multiple poses at test

time by simulating my data under multiple poses and using the unposing technique

from [11].
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