Bibliography

- Stevie Giovanni, Yeun Chul Choi, Jay Huang, Eng Tat Khoo, and KangKang Yin. Virtual try-on using kinect and hd camera. In *International Conference* on Motion in Games, pages 55–65. Springer, 2012.
- [2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. Video based reconstruction of 3d people models. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8387–8397, 2018.
- [3] Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-to-end recovery of human shape and pose. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 7122–7131, 2018.
- [4] Gul Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin Yumer, Ivan Laptev, and Cordelia Schmid. Bodynet: Volumetric inference of 3d human body shapes. In *Proceedings of the European Conference on Computer Vision* (ECCV), pages 20–36, 2018.
- [5] Zerong Zheng, Tao Yu, Yixuan Wei, Qionghai Dai, and Yebin Liu. Deephuman: 3d human reconstruction from a single image. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 7739–7749, 2019.
- [6] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2304–2314, 2019.
- [7] Albert Pumarola, Jordi Sanchez-Riera, Gary Choi, Alberto Sanfeliu, and Francesc Moreno-Noguer. 3dpeople: Modeling the geometry of dressed humans. In Proceedings of the IEEE International Conference on Computer Vision, pages 2242–2251, 2019.
- [8] Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini, Minh Dang, Mathieu Salzmann, and Pascal Fua. Garnet: A two-stream network for fast and

accurate 3d cloth draping. In *Proceedings of the IEEE International Confer*ence on Computer Vision, pages 8739–8748, 2019.

- [9] Tuanfeng Y Wang, Duygu Ceylan, Jovan Popovic, and Niloy J Mitra. Learning a shared shape space for multimodal garment design. *arXiv preprint arXiv:1806.11335*, 2018.
- [10] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll. Multi-garment net: Learning to dress 3d people from images. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 5419–5429. IEEE, 2019.
- [11] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. Tailornet: Predicting clothing in 3d as a function of human pose, shape and garment style. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE, jun 2020.
- [12] R Daněřek, Endri Dibra, Cengiz Öztireli, Remo Ziegler, and Markus Gross. Deepgarment: 3d garment shape estimation from a single image. In *Computer Graphics Forum*, volume 36, pages 269–280. Wiley Online Library, 2017.
- [13] Filipe de Avila Belbute-Peres, Kevin A. Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter. End-to-end differentiable physics for learning and control. In Advances in Neural Information Processing Systems, 2018.
- [14] Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A differentiable physics engine for deep learning in robotics. *Frontiers in Neurorobotics*, 13, 2019.
- [15] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. Differentiable physics and stable modes for tool-use and manipulation planning. In *Robotics: Science and Systems (RSS)*, 2018.
- [16] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. Chain-Queen: A real-time differentiable physical simulator for soft robotics. In *International Conference on Robotics and Automation (ICRA)*, 2019.
- [17] Connor Schenck and Dieter Fox. SPNets: Differentiable fluid dynamics for deep neural networks. In *Conference on Robot Learning (CoRL)*, 2018.
- [18] Marco Cusumano-Towner, Arjun Singh, Stephen Miller, James F. O'Brien, and Pieter Abbeel. Bringing clothing into desired configurations with limited perception. In *International Conference on Robotics and Automation (ICRA)*, 2011.
- [19] Stephen Miller, Jur van den Berg, Mario Fritz, Trevor Darrell, Kenneth Y. Goldberg, and Pieter Abbeel. A geometric approach to robotic laundry folding. *I. J. Robotics Res.*, 31(2), 2012.

- [20] Katherine L. Bouman, Bei Xiao, Peter Battaglia, and William T. Freeman. Estimating the material properties of fabric from video. In *International Conference on Computer Vision (ICCV)*, 2013.
- [21] Shan Yang, Junbang Liang, and Ming C Lin. Learning-based cloth material recovery from video. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 4383–4393, 2017.
- [22] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. Clothcap: Seamless 4d clothing capture and retargeting. ACM Transactions on Graphics (TOG), 36(4):1–15, 2017.
- [23] Zorah Lähner, Daniel Cremers, and Tony Tung. DeepWrinkles: Accurate and realistic clothing modeling. In European Conference on Computer Vision (ECCV), 2018.
- [24] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. Efficient simulation of inextensible cloth. In ACM SIGGRAPH 2007 papers, pages 49–es. 2007.
- [25] Dongliang Zhang and Matthew MF Yuen. Cloth simulation using multilevel meshes. Computers & Graphics, 25(3):383–389, 2001.
- [26] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of collisions, contact and friction for cloth animation. ACM Transactions on Graphics (ToG), 21(3):594–603, 2002.
- [27] David Baraff and Andrew Witkin. Large steps in cloth simulation. In SIG-GRAPH, 1998.
- [28] Assaf Neuberger, Eran Borenstein, Bar Hilleli, Eduard Oks, and Sharon Alpert. Image based virtual try-on network from unpaired data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5184–5193, 2020.
- [29] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An image-based virtual try-on network. In *Proceedings of the IEEE conference on* computer vision and pattern recognition, pages 7543–7552, 2018.
- [30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6):1–16, 2015.
- [31] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM Transactions on Graphics (TOG), 36(4):44, 2017.

- [32] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end recovery of human shape and pose. In *Computer Vision and Pat*tern Regognition (CVPR), 2018.
- [33] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Daniilidis. Coarse-to-fine volumetric prediction for single-image 3d human pose. In *Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference* on, pages 1263–1272. IEEE, 2017.
- [34] Bugra Tekin, Pablo Marquez Neila, Mathieu Salzmann, and Pascal Fua. Learning to fuse 2d and 3d image cues for monocular body pose estimation. In *International Conference on Computer Vision (ICCV)*, number EPFL-CONF-230311, 2017.
- [35] Denis Tome, Christopher Russell, and Lourdes Agapito. Lifting from the deep: Convolutional 3d pose estimation from a single image. CVPR 2017 Proceedings, pages 2500–2509, 2017.
- [36] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and Yichen Wei. Weaklysupervised transfer for 3d human pose estimation in the wild. In *IEEE International Conference on Computer Vision*, volume 206, page 3, 2017.
- [37] Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, and Yichen Wei. Deep kinematic pose regression. In *European Conference on Computer Vision*, pages 186–201. Springer, 2016.
- [38] Alexandru O Balan, Leonid Sigal, Michael J Black, James E Davis, and Horst W Haussecker. Detailed human shape and pose from images. In *Computer Vision and Pattern Recognition*, 2007. CVPR'07. IEEE Conference on, pages 1–8. IEEE, 2007.
- [39] Yu Chen, Tae-Kyun Kim, and Roberto Cipolla. Inferring 3d shapes and deformations from single views. In *European Conference on Computer Vision*, pages 300–313. Springer, 2010.
- [40] Endri Dibra, Himanshu Jain, Cengiz Öztireli, Remo Ziegler, and Markus Gross. Hs-nets: Estimating human body shape from silhouettes with convolutional neural networks. In 3D Vision (3DV), 2016 Fourth International Conference on, pages 108–117. IEEE, 2016.
- [41] Peng Guan, Alexander Weiss, Alexandru O Balan, and Michael J Black. Estimating human shape and pose from a single image. In *Computer Vision*, 2009 IEEE 12th International Conference on, pages 1381–1388. IEEE, 2009.
- [42] Nils Hasler, Hanno Ackermann, Bodo Rosenhahn, Thorsten Thormählen, and Hans-Peter Seidel. Multilinear pose and body shape estimation of dressed subjects from image sets. In *Computer Vision and Pattern Recognition (CVPR)*, 2010 IEEE Conference on, pages 1823–1830. IEEE, 2010.

- [43] Arjun Jain, Thorsten Thormählen, Hans-Peter Seidel, and Christian Theobalt. Moviereshape: Tracking and reshaping of humans in videos. In ACM Transactions on Graphics (TOG), volume 29, page 148. ACM, 2010.
- [44] J Tan, Ignas Budvytis, and Roberto Cipolla. Indirect deep structured learning for 3d human body shape and pose prediction. In *BMVC*, volume 3, page 6, 2017.
- [45] Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki. Self-supervised learning of motion capture. In Advances in Neural Information Processing Systems, pages 5236–5246, 2017.
- [46] Nils Hasler, Carsten Stoll, Bodo Rosenhahn, Thorsten Thormählen, and Hans-Peter Seidel. Estimating body shape of dressed humans. *Computers & Graphics*, 33(3):211–216, 2009.
- [47] Stefanie Wuhrer, Leonid Pishchulin, Alan Brunton, Chang Shu, and Jochen Lang. Estimation of human body shape and posture under clothing. *Computer Vision and Image Understanding*, 127:31–42, 2014.
- [48] Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie Wuhrer. Estimation of human body shape in motion with wide clothing. In European Conference on Computer Vision, pages 439–454. Springer, 2016.
- [49] Chao Zhang, Sergi Pujades, Michael Black, and Gerard Pons-Moll. Detailed, accurate, human shape estimation from clothed 3d scan sequences. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, volume 2, 2017.
- [50] Alexandru O Bălan and Michael J Black. The naked truth: Estimating body shape under clothing. In *European Conference on Computer Vision*, pages 15–29. Springer, 2008.
- [51] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J Black. Keep it smpl: Automatic estimation of 3d human pose and shape from a single image. In *European Conference on Computer Vision*, pages 561–578. Springer, 2016.
- [52] Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J Black, and Peter V Gehler. Unite the people: Closing the loop between 3d and 2d human representations. In *IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, volume 2, page 3, 2017.
- [53] Matthew Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse. Total capture: 3d human pose estimation fusing video and inertial sensors. In *Proceedings of 28th British Machine Vision Conference*, pages 1–13, 2017.

- [54] Juan Carlos Núñez, Raúl Cabido, José F Vélez, Antonio S Montemayor, and Juan José Pantrigo. Multiview 3d human pose estimation using improved least-squares and lstm networks. *Neurocomputing*, 323:335–343, 2019.
- [55] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsupervised geometryaware representation for 3d human pose estimation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 750–767, 2018.
- [56] Matthew Trumble, Andrew Gilbert, Adrian Hilton, and John Collomosse. Deep autoencoder for combined human pose estimation and body model upscaling. In *Proceedings of the European Conference on Computer Vision* (ECCV), pages 784–800, 2018.
- [57] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Daniilidis. Harvesting multiple views for marker-less 3d human pose annotations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6988–6997, 2017.
- [58] Denis Tome, Matteo Toso, Lourdes Agapito, and Chris Russell. Rethinking pose in 3d: Multi-stage refinement and recovery for markerless motion capture. In 2018 International Conference on 3D Vision (3DV), pages 474–483. IEEE, 2018.
- [59] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In *European conference on computer vision*, pages 628–644. Springer, 2016.
- [60] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter Gehler, and Bernt Schiele. Neural body fitting: Unifying deep learning and model based human pose and shape estimation. In 2018 International Conference on 3D Vision (3DV), pages 484–494. IEEE, 2018.
- [61] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning to estimate 3d human pose and shape from a single color image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 459–468, 2018.
- [62] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh regression for single-image human shape reconstruction. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4501–4510, 2019.
- [63] Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhenhua Wang, Changhe Tu, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen. Synthesizing training images for boosting human 3d pose estimation. In 3D Vision (3DV), 2016 Fourth International Conference on, pages 479–488. IEEE, 2016.

- [64] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), 2017.
- [65] CMU. Carnegie-mellon mocap database. created with funding from nsf eia-0196217, 2003.
- [66] Kathleen M Robinette, Sherri Blackwell, Hein Daanen, Mark Boehmer, and Scott Fleming. Civilian american and european surface anthropometry resource (caesar), final report. volume 1. summary. Technical report, SYTRON-ICS INC DAYTON OH, 2002.
- [67] Hosnieh Sattar, Gerard Pons-Moll, and Mario Fritz. Fashion is taking shape: Understanding clothing preference based on body shape from online sources. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 968–977. IEEE, 2019.
- [68] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar, Christian Theobalt, and Gerard Pons-Moll. Learning to reconstruct people in clothing from a single rgb camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1175–1186, 2019.
- [69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [70] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pages 740–755. Springer, 2014.
- [71] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. Monocular 3d human pose estimation in the wild using improved cnn supervision. In 3D Vision (3DV), 2017 Fifth International Conference on. IEEE, 2017.
- [72] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. *IEEE transactions on pattern analysis and machine intelligence*, 36(7):1325–1339, 2014.
- [73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In *European conference on computer vision*, pages 630–645. Springer, 2016.
- [74] Rahul Narain, Armin Samii, and James F. O'Brien. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph., 31(6), 2012.

- [75] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. Monocular 3d human pose estimation in the wild using improved cnn supervision. In 3D Vision (3DV), 2017 International Conference on, pages 506–516. IEEE, 2017.
- [76] Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. General automatic human shape and motion capture using volumetric contour cues. In *European conference on computer* vision, pages 509–526. Springer, 2016.
- [77] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR, abs/1703.06870, 2017.
- [78] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. Lcr-net: Localization-classification-regression for human pose. In CVPR 2017-IEEE Conference on Computer Vision & Pattern Recognition, 2017.
- [79] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei. Compositional human pose regression. In *The IEEE International Conference on Computer* Vision (ICCV), volume 2, page 7, 2017.
- [80] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer Afaque, Abhishek Sharma, and Arjun Jain. Learning 3d human pose from structure and motion. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 668–683, 2018.
- [81] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and Christian Theobalt. Ganerated hands for real-time 3d hand tracking from monocular rgb. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 49–59, 2018.
- [82] Richard W Cottle. Linear Complementarity Problem. Springer, 2009.
- [83] Michael Bradley Cline. *Rigid Body Simulation with Contact and Constraints*. PhD thesis, University of British Columbia, 2002.
- [84] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Fei-Fei Li, Josh Tenenbaum, and Daniel L. Yamins. Flexible neural representation for physics prediction. In Advances in Neural Information Processing Systems, 2018.
- [85] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In *International Conference on Learning Representations* (*ICLR*), 2019.
- [86] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure with a differentiable simulator. In *International Conference on Learning Representations (ICLR)*, 2019.

- [87] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating Eulerian fluid simulation with convolutional networks. In International Conference on Machine Learning (ICML), 2017.
- [88] J Nathan Kutz. Deep learning in fluid dynamics. *Journal of Fluid Mechanics*, 814, 2017.
- [89] Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynamical modeling and control of unsteady fluid flows. In Advances in Neural Information Processing Systems, 2018.
- [90] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Learning-based animation of clothing for virtual try-on. In *Eurographics*, 2019.
- [91] Olaf Etzmuß, Michael Keckeisen, and Wolfgang Straßer. A fast finite element solution for cloth modelling. In *Pacific Conference on Computer Graphics and Applications*, 2003.
- [92] David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. Robust treatment of simultaneous collisions. *ACM Trans. Graph.*, 27(3), 2008.
- [93] Huamin Wang, James F. O'Brien, and Ravi Ramamoorthi. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph., 30(4), 2011.
- [94] Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. Discrete shells. In Symposium on Computer Animation, 2003.
- [95] Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam Gross, Adam Paszke, Francisco Massa, Adam Lerer, Gregory Chanan, Zeming Lin, Edward Yang, et al. PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, 2019.
- [96] Min Tang, Dinesh Manocha, and Ruofeng Tong. Fast continuous collision detection using deforming non-penetration filters. In Symposium on Interactive 3D Graphics and Games, 2010.
- [97] Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks. In International Conference on Machine Learning (ICML), 2017.
- [98] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement learning. In *International Conference* on Machine Learning (ICML), 2018.
- [99] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652– 660, 2017.

- [100] Romain Casati, Gilles Daviet, and Florence Bertails-Descoubes. *Inverse elastic cloth design with contact and friction*. PhD thesis, Inria Grenoble Rhône-Alpes, Université de Grenoble, 2016.
- [101] Bernd Bickel, Moritz Bächer, Miguel A Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics (TOG), 29(4):1–10, 2010.
- [102] Raquel Vidaurre, Dan Casas, Elena Garces, and Jorge Lopez-Moreno. Brdf estimation of complex materials with nested learning. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1347–1356. IEEE, 2019.
- [103] Giuseppe Claudio Guarnera, Peter Hall, Alain Chesnais, and Mashhuda Glencross. Woven fabric model creation from a single image. ACM Transactions on Graphics (TOG), 36(5):1–13, 2017.
- [104] Wenyan Bi, Peiran Jin, Hendrikje Nienborg, and Bei Xiao. Estimating mechanical properties of cloth from videos using dense motion trajectories: Human psychophysics and machine learning. *Journal of vision*, 18(5):12–12, 2018.
- [105] Wenyan Bi and Bei Xiao. Perceptual constancy of mechanical properties of cloth under variation of external forces. In *Proceedings of the ACM symposium* on applied perception, pages 19–23, 2016.
- [106] Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Stefanie Wuhrer, Jean-Sébastien Franco, and Arnaud Lazarus. Learning to measure the static friction coefficient in cloth contact. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9912–9921, 2020.
- [107] Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C Schvartzman, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A Otaduy. Modeling and estimation of internal friction in cloth. ACM Transactions on Graphics (TOG), 32(6):1–10, 2013.
- [108] Katherine L Bouman, Bei Xiao, Peter Battaglia, and William T Freeman. Estimating the material properties of fabric from video. In *Proceedings of the IEEE international conference on computer vision*, pages 1984–1991, 2013.
- [109] David Clyde, Joseph Teran, and Rasmus Tamstorf. Modeling and data-driven parameter estimation for woven fabrics. In Proceedings of the ACM SIG-GRAPH/Eurographics Symposium on Computer Animation, pages 1–11, 2017.
- [110] Shan Yang, Tanya Ambert, Zherong Pan, Ke Wang, Licheng Yu, Tamara Berg, and Ming C Lin. Detailed garment recovery from a single-view image. arXiv preprint arXiv:1608.01250, 2016.

- [111] Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Miguel A Otaduy, and Steve Marschner. Data-driven estimation of cloth simulation models. In *Computer Graphics Forum*, volume 31, pages 519–528. Wiley Online Library, 2012.
- [112] Kiran S Bhat, Christopher D Twigg, Jessica K Hodgins, Pradeep Khosla, Zoran Popovic, and Steven M Seitz. Estimating cloth simulation parameters from video. 2003.
- [113] Bin Zhou, Xiaowu Chen, Qiang Fu, Kan Guo, and Ping Tan. Garment modeling from a single image. In *Computer graphics forum*, volume 32, pages 85–91. Wiley Online Library, 2013.
- [114] Moon-Hwan Jeong, Dong-Hoon Han, and Hyeong-Seok Ko. Garment capture from a photograph. Computer Animation and Virtual Worlds, 26(3-4):291– 300, 2015.
- [115] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. Markerless garment capture. In ACM SIGGRAPH 2008 papers, pages 1–9. 2008.
- [116] Thiemo Alldieck, Gerard Pons-Moll, Christian Theobalt, and Marcus Magnor. Tex2shape: Detailed full human body geometry from a single image. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2293–2303, 2019.
- [117] Xiaowu Chen, Bin Zhou, Fei-Xiang Lu, Lin Wang, Lang Bi, and Ping Tan. Garment modeling with a depth camera. ACM Trans. Graph., 34(6):203–1, 2015.
- [118] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt. Deepcap: Monocular human performance capture using weak supervision. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE, jun 2020.
- [119] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung. Arch: Animatable reconstruction of clothed humans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3093–3102, 2020.
- [120] Heming Zhu, Yu Cao, Hang Jin, Weikai Chen, Dong Du, Zhangye Wang, Shuguang Cui, and Xiaoguang Han. Deep fashion3d: A dataset and benchmark for 3d garment reconstruction from single images. arXiv preprint arXiv:2003.12753, 2020.
- [121] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang Liu, and Hujun Bao. Bcnet: Learning body and cloth shape from a single image. arXiv preprint arXiv:2004.00214, 2020.

- [122] Tao Yu, Zerong Zheng, Yuan Zhong, Jianhui Zhao, Qionghai Dai, Gerard Pons-Moll, and Yebin Liu. Simulcap: Single-view human performance capture with cloth simulation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5499–5509. IEEE, 2019.
- [123] Garvita Tiwari, Bharat Lal Bhatnagar, Tony Tung, and Gerard Pons-Moll. Sizer: A dataset and model for parsing 3d clothing and learning size sensitive 3d clothing. arXiv preprint arXiv:2007.11610, 2020.
- [124] Zorah Lahner, Daniel Cremers, and Tony Tung. Deepwrinkles: Accurate and realistic clothing modeling. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 667–684, 2018.
- [125] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In *The IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- [126] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.
- [127] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems, pages 5099–5108, 2017.
- [128] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):1–12, 2019.
- [129] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum pointnets for 3d object detection from rgb-d data. In *The IEEE Confer*ence on Computer Vision and Pattern Recognition (CVPR), June 2018.
- [130] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.
- [131] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on x-transformed points. In Advances in neural information processing systems, pages 820–830, 2018.
- [132] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional pose machines. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 4724–4732, 2016.
- [133] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multiperson 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7291–7299, 2017.

- [134] Yuanlu Xu, Song-Chun Zhu, and Tony Tung. Denserac: Joint 3d pose and shape estimation by dense render-and-compare. In Proceedings of the IEEE International Conference on Computer Vision, pages 7760–7770, 2019.
- [135] David Smith, Matthew Loper, Xiaochen Hu, Paris Mavroidis, and Javier Romero. Facsimile: Fast and accurate scans from an image in less than a second. In *Proceedings of the IEEE International Conference on Computer* Vision, pages 5330–5339, 2019.
- [136] Junbang Liang and Ming C Lin. Shape-aware human pose and shape reconstruction using multi-view images. In Proceedings of the IEEE International Conference on Computer Vision, pages 4352–4362, 2019.
- [137] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis. Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In Proceedings of the IEEE International Conference on Computer Vision, pages 2252–2261, 2019.
- [138] Wenjuan Gong, Xuena Zhang, Jordi Gonzàlez, Andrews Sobral, Thierry Bouwmans, Changhe Tu, and El-hadi Zahzah. Human pose estimation from monocular images: A comprehensive survey. *Sensors*, 16(12):1966, 2016.
- [139] Andrea Saltelli. Sensitivity analysis for importance assessment. *Risk analysis*, 22(3):579–590, 2002.
- [140] Qingyang Tan, Zherong Pan, Lin Gao, and Dinesh Manocha. Realtime simulation of thin-shell deformable materials using cnn-based mesh embedding. *IEEE Robotics and Automation Letters*, 5(2):2325–2332, 2020.
- [141] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu Aubry. Learning elementary structures for 3d shape generation and matching. In Advances in Neural Information Processing Systems, pages 7433–7443, 2019.
- [142] Jan Bednarik, Shaifali Parashar, Erhan Gundogdu, Mathieu Salzmann, and Pascal Fua. Shape reconstruction by learning differentiable surface representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4716–4725, 2020.
- [143] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transactions on Graphics (ToG), 32(3):1–13, 2013.
- [144] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. Pytorch3d. https://github.com/ facebookresearch/pytorch3d, 2020.
- [145] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

- [146] Yu Shen, Junbang Liang, and Ming C Lin. Gan-based garment generation using sewing pattern images. In Proceedings of the European Conference on Computer Vision (ECCV), volume 1, page 3, 2020.
- [147] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans. In CVPR, 2017.
- [148] Greg Zaal. Hdri haven.
- [149] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [150] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-Ichi Amari, Alain Trouvé, and Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences. arXiv preprint arXiv:1810.08278, 2018.
- [151] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis using neural textures. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.
- [152] Xiang Ni, Laxmikant V Kale, and Rasmus Tamstorf. Scalable asynchronous contact mechanics using charm++. In *Parallel and Distributed Processing* Symposium (IPDPS), 2015 IEEE International, pages 677–686. IEEE, 2015.
- [153] Min Tang, Huamin Wang, Le Tang, Ruofeng Tong, and Dinesh Manocha. Cama: Contact-aware matrix assembly with unified collision handling for gpubased cloth simulation. In *Computer Graphics Forum*, volume 35, pages 511– 521. Wiley Online Library, 2016.
- [154] Florence Zara, François Faure, and J-M Vincent. Parallel simulation of large dynamic system on a pc cluster: Application to cloth simulation. *International Journal of Computers and Applications*, 26(3):1–8, 2004.
- [155] Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Transactions on Graphics, 28(4):Article–No, 2009.
- [156] Cyril Zeller. Cloth simulation on the gpu. In ACM SIGGRAPH 2005 Sketches, page 39. ACM, 2005.
- [157] David Baraff, Andrew Witkin, and Michael Kass. Untangling cloth. In ACM Transactions on Graphics (TOG), volume 22, pages 862–870. ACM, 2003.
- [158] Matthew Emmett and Michael L. Minion. Toward an Efficient Parallel in Time Method for Partial Differential Equations. Communications in Applied Mathematics and Computational Science, 7:105–132, 2012.

- [159] Robert Speck, Daniel Ruprecht, Rolf Krause, Matthew Emmett, Michael L. Minion, Mathias Winkel, and Paul Gibbon. A massively space-time parallel N-body solver. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC '12, pages 92:1–92:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.
- [160] Daniel Ruprecht, Robert Speck, Matthew Emmett, Matthias Bolten, and Rolf Krause. Poster: Extreme-scale space-time parallelism. In Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, SC '13 Companion, 2013.
- [161] Martin J. Gander and Martin J. Gander. 50 years of time parallel time integration.
- [162] Huamin Wang and Yin Yang. Descent methods for elastic body simulation on the gpu. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.
- [163] Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. Vivace: A practical gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics (TOG), 35(6):214, 2016.
- [164] Bart Maerten, Dirk Roose, Achim Basermann, Jochen Fingberg, and Guy Lonsdale. Drama: A library for parallel dynamic load balancing of finite element applications. In *European Conference on Parallel Processing*, pages 313–316. Springer, 1999.
- [165] Sergio Romero, Luis F Romero, and Emilio L Zapata. Fast cloth simulation with parallel computers. In *European Conference on Parallel Processing*, pages 491–499. Springer, 2000.
- [166] Michael Keckeisen and Wolfgang Blochinger. Parallel implicit integration for cloth animations on distributed memory architectures. In Proceedings of the 5th Eurographics conference on Parallel Graphics and Visualization, pages 119–126. Eurographics Association, 2004.
- [167] Bernhard Thomaszewski and Wolfgang Blochinger. Parallel simulation of cloth on distributed memory architectures. In *Proceedings of the 6th Eurographics conference on Parallel Graphics and Visualization*, pages 35–42. Eurographics Association, 2006.
- [168] Florence Zara, François Faure, and Jean-Marc Vincent. Physical cloth simulation on a pc cluster. In 4h Eurographics Workshop on Parallel Graphics and Visualization, 2002.
- [169] Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf. Speculative parallel asynchronous contact mechanics. ACM Trans. Graph., 31(6):151:1–151:8, November 2012.

- [170] Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. Smoothed aggregation multigrid for cloth simulation. ACM Transactions on Graphics (TOG), 34(6):1–13, 2015.
- [171] Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. TRACKS: Toward Directable Thin Shells. ACM Transactions on Graphics (SIGGRAPH), 26(3):50:1–50:10, jul 2007.
- [172] Matthias Müller and Nuttapong Chentanez. Wrinkle meshes. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation, pages 85–92. Eurographics Association, 2010.
- [173] Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F O'Brien. Example-based wrinkle synthesis for clothing animation. In ACM SIGGRAPH 2010 papers, pages 1–8. 2010.
- [174] Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and Alla Sheffer. Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles. In ACM Transactions on Graphics (TOG), volume 29, page 157. ACM, 2010.
- [175] Peter Schröder, Denis Zorin, T DeRose, DR Forsey, L Kobbelt, M Lounsbery, and J Peters. Subdivision for modeling and animation. ACM SIGGRAPH Course Notes, 12(2):43, 1998.
- [176] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character animation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 85–94. ACM, 1998.
- [177] Charles Loop. Smooth subdivision surfaces based on triangles. 1987.
- [178] Ladislav Kavan, Dan Gerszewski, Adam W Bargteil, and Peter-Pike Sloan. Physics-inspired upsampling for cloth simulation in games. In ACM SIG-GRAPH 2011 papers, pages 1–10. 2011.
- [179] Wei-Wen Feng, Yizhou Yu, and Byung-Uck Kim. A deformation transformer for real-time cloth animation. In ACM Transactions on Graphics (TOG), volume 29, page 108. ACM, 2010.
- [180] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum (Proc. Eurographics), 2019.
- [181] Raquel Vidaurre, Igor Santesteban, Elena Garces, and Dan Casas. Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On. Computer Graphics Forum (Proc. SCA), 2020.

- [182] Nicholas J Weidner, Kyle Piddington, David IW Levin, and Shinjiro Sueda. Eulerian-on-lagrangian cloth simulation. ACM Transactions on Graphics (TOG), 37(4):1–11, 2018.
- [183] Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. I-cloth: incremental collision handling for gpu-based interactive cloth simulation. ACM Transactions on Graphics (TOG), 37(6):1–10, 2018.
- [184] Junbang Liang and Ming C Lin. Time-domain parallelization for accelerating cloth simulation. In *Computer Graphics Forum*, volume 37, pages 21–34. Wiley Online Library, 2018.
- [185] Tiantian Liu, Adam W Bargteil, James F O'Brien, and Ladislav Kavan. Fast simulation of mass-spring systems. ACM Transactions on Graphics (TOG), 32(6):1–7, 2013.
- [186] Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F O'Brien. Near-exhaustive precomputation of secondary cloth effects. ACM Transactions on Graphics (TOG), 32(4):1–8, 2013.
- [187] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and Markus Gross. Subspace clothing simulation using adaptive bases. ACM Transactions on Graphics (TOG), 33(4):1–9, 2014.
- [188] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. Subspace neural physics: Fast data-driven interactive simulation. In Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 1–12, 2019.
- [189] Russell Gillette, Craig Peters, Nicholas Vining, Essex Edwards, and Alla Sheffer. Real-time dynamic wrinkling of coarse animated cloth. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 17–26, 2015.
- [190] Meng Zhang, Tuanfeng Wang, Duygu Ceylan, and Niloy J Mitra. Deep detail enhancement for any garment. *arXiv e-prints*, pages arXiv-2008, 2020.
- [191] Victor J Milenkovic and Harald Schmidl. Optimization-based animation. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 37–46, 2001.
- [192] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Gerard Pons-Moll, Siyu Tang, and Michael J Black. Learning to dress 3d people in generative clothing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6469–6478, 2020.

- [193] Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler, and Stefanie Wuhrer. Analyzing clothing layer deformation statistics of 3d human motions. In Proceedings of the European Conference on Computer Vision (ECCV), pages 237–253, 2018.
- [194] Tuanfeng Y Wang, Tianjia Shao, Kai Fu, and Niloy J Mitra. Learning an intrinsic garment space for interactive authoring of garment animation. ACM Transactions on Graphics (TOG), 38(6):1–12, 2019.
- [195] Edilson De Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K Hodgins. Stable spaces for real-time clothing. ACM Transactions on Graphics (TOG), 29(4):1–9, 2010.
- [196] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll. Multi-garment net: Learning to dress 3d people from images. In Proceedings of the IEEE International Conference on Computer Vision, pages 5420–5430, 2019.
- [197] Alexandros Neophytou and Adrian Hilton. A layered model of human body and garment deformation. In 2014 2nd International Conference on 3D Vision, volume 1, pages 171–178. IEEE, 2014.
- [198] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt. Livecap: Real-time human performance capture from monocular video. ACM Transactions on Graphics (TOG), 38(2):1–17, 2019.
- [199] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor. In *Proceed*ings of the IEEE conference on computer vision and pattern recognition, pages 7287–7296, 2018.
- [200] Adult obesity facts. https://www.cdc.gov/obesity/data/adult.html, 2020.
- [201] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
- [202] Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. Spectral mesh processing. In Computer graphics forum, volume 29, pages 1865–1894. Wiley Online Library, 2010.
- [203] Theodore HH Pian and Pin Tong. Finite element methods in continuum mechanics. In Advances in applied mechanics, volume 12, pages 1–58. Elsevier, 1972.
- [204] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.